Какое соединение входит в состав нейтральных липидов. Поступление в организм. С глицерофосфолипидами метаболически очень тесно свя­заны лизофосфолипиды. Вих составе содержится только один остаток жирной кислоты. Примером может служить лизофосфатидилхолин,

Что такое липиды, какова классификация липидов, в чем состоит их строение и функции? Ответ на этот и многие другие вопросы дает биохимия, занимающаяся изучением этих и других веществ, имеющих большое значение для метаболизма.

Что это такое

Липиды представляют собой органические вещества, нерастворяемые в воде. Функции липидов в теле человека многообразны.

Неадекватное потребление диетических липидов может привести к проблемам роста и увеличению риска хронических заболеваний. Если неадекватное потребление жира также сопровождается недостаточным потреблением углеводов и белка и, следовательно, энергии, это может привести к недоеданию. Адекватное потребление жира особенно важно в детстве и во время беременности.

Признано, что диета с высоким содержанием жиров, которая превышает энергетические потребности, может привести к ожирению. Существует также связь между высоким содержанием жиров и повышенным риском сердечно-сосудистых заболеваний, рака и резистентности к инсулину, приводящим к диабету. Тип жирной кислоты, потребляемой в избытке, играет очень решающую роль в этих отношениях.

Липиды — это слово означает «мелкие частички жира»

Это прежде всего:

  • Энергетическая. Липиды служат субстратом для запасания и использования энергии. При расщеплении 1 грамма жиров выделяется примерно в 2 раза больше энергии, чем при расщеплении белка или углеводов такого же веса.
  • Структурная функция. Структура липидов определяет строение мембран клеток нашего тела. Они располагаются таким образом, что гидрофильная часть молекулы находится внутри клетки, а гидрофобная ─ на ее поверхности. Благодаря этим свойствам липидов каждая клетка, с одной стороны, представляет собой автономную систему, отгороженную от внешнего мира, а с другой ─ каждая клетка может обмениваться молекулами с другими и с окружающей средой с помощью специальных транспортных систем.
  • Защитная. Поверхностный слой, что имеется у нас на коже и служит своеобразным барьером между нами и окружающим миром также составлен из липидов. Кроме того, они в составе жировой ткани обеспечивают функцию теплоизоляции и защиту от пагубных внешних воздействий.
  • Регуляторная. Они входят в состав витаминов, гормонов и других веществ, регулирующих многие процессы в организме.

Общая характеристика липидов исходит из особенностей строения. Они обладают двоякими свойствами, так как имеют в составе молекулы растворимую и нерастворимую части.

Триглицериды могут быть насыщенными, мононенасыщенными или полиненасыщенными. Эти термины относятся к насыщению водородом жирных кислот. Насыщенные жирные кислоты: в насыщенной жирной кислоте все связи между атомами углерода просты. Каждый углерод обладает как можно большим количеством водорода. Ни один водород не может быть добавлен к молекуле; Он насыщен.

Мононенасыщенные жирные кислоты: мононенасыщенная жирная кислота содержит двойную связь углерод = углерод. Эта молекула может быть гидрирована путем превращения двойной связи в одинарную связь. Тогда было бы необходимо добавить два атома водорода. Гидрирование ненасыщенной жирной кислоты.


Поступление в организм

Липиды частично поступают в организм человека с пищей, частично способны синтезироваться эндогенно. Расщепление основной части пищевых липидов происходит в 12-перстной кишке под воздействием панкреатического сока, выделяемого поджелудочной железой и желчных кислот в составе желчи. Расщепившись, они ресинтезируются вновь в кишечной стенке и, уже в составе специальных транспортных частиц ─ липопротеинов, ─ готовы поступить в лимфатическую систему и общий кровоток.

Полиненасыщенные жирные кислоты: полиненасыщенная жирная кислота содержит несколько двойных связей. Триглицериды животного происхождения обычно насыщены, тогда как триглицериды растительного происхождения обычно моно - или полиненасыщенные. Насыщенные жиры обычно твердые при комнатной температуре, а ненасыщенные - жидкие.

Потребление насыщенных жиров не рекомендуется. Исследования показали, что существует корреляция между количеством насыщенного жира в рационе и аномально высоким уровнем холестерина в крови. Высокий уровень холестерина увеличивает риск сердечно-сосудистых заболеваний. Короче говоря, насыщенный жир имеет тенденцию делать Повышение холестерина и холестерина способствует сердечно-сосудистым заболеваниям.

С пищей ежедневно человеку необходимо получать около 50-100 граммов жиров, что зависит от состояния организма и уровня физической активности.

Классификация

Классификация липидов в зависимости от их способности образовывать мыла в определенных условиях разделяет их на следующие классы липидов:

  • Омыляемые. Так называются вещества, которые в среде с щелочной реакцией образуют соли карбокислот (мыла). В эту группу относятся простые липиды, сложные липиды. Как простые липиды, так и сложные важны организму, они имеют разное строение и, соответственно ему, липиды выполняют разные функции.
  • Неомыляемые. В щелочной среде не образуют солей карбоновых кислот. Сюда биологическая химия относит жирные кислоты, производные полиненасыщенных жирных кислот ─ эйкозаноиды, холестерин, как наиболее яркий представитель основного класса стеринов-липидов, а также производные его ─ стероиды и некоторые другие вещества, например, витамины А, Е и др.


Цис и трансжирные кислоты В пищевой промышленности принято полностью или частично гидрировать ненасыщенные масла. Это гидрирование повышает стабильность масла или придает ему свойства, которые требуются на кухне. Однако, когда гидрирование не завершено, эта операция вызывает так называемые транс-жиры.

Термин «транс» относится к положению Н, связанному с двумя атомами углерода двойной связи. Обратите внимание, что трансконформирующие цепи жирных кислот более прямолинейны, чем трансформирующие цис-конформации. Ненасыщенные натуральные жиры являются цис-конформацией. Исследования последних лет показали, что потребление транс-жиров увеличивает риск сердечно-сосудистых заболеваний даже больше, чем потребление насыщенных жиров, поэтому мы настоятельно рекомендуем Потребление продуктов, содержащих транс-жиры.

Общая классификация липидов

Жирные кислоты

Веществами, которые относятся к группе так называемых простых липидов и имеют большое значение для организма являются жирные кислоты. В зависимости от наличия двойных связей в неполярном (нерастворимом в воде) углеродном «хвосте», жирные кислоты делят на насыщенные (двойных связей не имеют) и ненасыщенные (имеют одну или даже больше двойных углерод-углеродных связей). Примеры первых: стеариновая, пальмитиновая. Примеры ненасыщенных и полиненасыщенных жирных кислот: олеиновая, линолевая и др.

Ключ к знанию о липидах

Наблюдайте на этом сайте структуру основных натуральных жирных кислот. Ваше сообщение отправлено. Что такое липиды, для чего они используются? Патрик Серог, диетолог, объясняет этот вопрос. Липиды, как углеводы и белки, являются энергетическими питательными веществами, необходимыми для функционирования нашего организма. Различные жирные кислоты В липидном семействе можно выделить различные типы жирных кислот: насыщенные, мононенасыщенные или полиненасыщенные. Различие между этими различными жирными кислотами соответствует наличию нулевой, одной или нескольких двойных связей или «ненасыщенности» на структуре жирных кислот.

Именно ненасыщенные жирные кислоты особенно важны для нас и должны обязательно поступать с пищей.

Почему? Потому что они:

  • Служат компонентом для синтеза клеточных мембран, участвуют в образовании многих биологически активных молекул.
  • Помогают поддерживать работу эндокринной и половой систем в норме.
  • Помогают предупредить или замедлить развитие атеросклероза и многих его последствий.


Или привилегия? Наше потребление насыщенных жирных кислот сейчас слишком велико. Важно ограничить потребление, потому что потребляется в избытке, эти жирные кислоты повышают риск сердечно-сосудистых заболеваний. Полиненасыщенные жирные кислоты состоят из двух семейств: Омега 6 и Омега. Именно в этих семьях мы находим незаменимые жирные кислоты, которые наши организмы неспособны синтезировать: диета Поэтому они должны доставлять их в достаточном количестве, чтобы покрыть наши повседневные потребности.

Действительно, многочисленные исследования показывают, что Омега-3, основные компоненты мембран наших клеток, способствуют правильному функционированию сердечно-сосудистой системы, мозга и иммунной защиты. Наконец, все больше исследований изучают роль Омега-3 в профилактике стресса, тревоги и даже депрессии.

Жирные кислоты делятся на две большие группы: ненасыщенные и насыщенные

Медиаторы воспаления и не только

Еще одним видом простых липидов являются такие важные медиаторы внутренней регуляции, как эйкозаноиды. Они имеют уникальное (как практически все в биологии) химическое строение и, соответственно этому, уникальные химические свойства. Главной основой для синтеза эйкозаноидов выступает арахидоновая кислота, которая является одной из важнейших ненасыщенных жирных кислот. Именно эйкозаноиды отвечают в организме за течение воспалительных процессов.

Уважайте баланс между Омегой-3 и Омегой-6. С другой стороны, Омега-6 является основным компонентом кожи и играет важную роль в снижении уровня холестерина при замене насыщенных жирных кислот в рационе. Действия этих двух жирных кислот являются взаимодополняющими и антагонистичными, поэтому важно соблюдать баланс вклада между этими двумя семьями. И обеспечить нас энергией и удовлетворить нас. В крови и метаболизме они служат сырьем для многих гормонов, они несут и хранят энергию. В тканях они участвуют в строительстве структур тела, таких как клеточные мембраны и нервы, защищают суставы и органы и сохраняют теплоту.

Кратко описать их роль в воспалении можно следующим образом:

  • Они изменяют проницаемость сосудистой стенки (а именно ─ повышают ее проницаемость).
  • Стимулируют выход лейкоцитов и других клеток иммунной системы в ткани.
  • С помощью химических веществ опосредуют перемещения клеток иммунитета, выброс ферментов и поглощение чужеродных для организма частиц.

Но на этом роль эйкозаноидов в теле человека не заканчивается, они также ответственны за систему свертывания крови. В зависимости от складывающейся ситуации эйкозаноиды могут расширить сосуды, расслабить гладкую мускулатуру, уменьшить агрегацию или, если потребуется, вызвать обратные эффекты: сужение сосудов, сокращение гладких мышечных клеток и тромбообразование.

Когда мы говорим о липидах на уровне питания, они, безусловно, являются самыми сложными и разнообразными макроэлементами. В то время как влияние углеводов и белков намного легче оценить, то липиды остаются широко распространенными. Сначала мы представим основные моменты, касающиеся липидов, прежде чем перейти к теме более подробно. Составленные из углеродного основания, липиды являются частью органических питательных веществ. В зависимости от количества атомов углерода, содержащихся в липиде или жирной кислоте, известны короткоцепочечные, средние или длинноцепочечные жирные кислоты.


Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Проводились исследования, согласно которым, люди, в достаточном количестве получавшие главный субстрат синтеза эйкозаноидов ─ арахидоновую кислоту ─ с пищей (находится в рыбьем жире, рыбе, растительных маслах) меньше страдали от заболеваний сердечно-сосудистой системы. Вероятнее всего, это связано с тем, что такие люди имеют более совершенный обмен эйкозаноидов.

Какова бы ни была их молекулярная природа, липиды, естественно, обеспечивают энергию в 37 килоджоулей на грамм. Питательно, длина цепи липида играет важную роль в пищеварении. Исходя из этого, различают насыщенные, мононенасыщенные и многонасыщенные жирные кислоты.

Не говоря уже о трансжирных кислотах, которые являются частью ненасыщенных жирных кислот, но занимают особое место. Как правило, атомы углерода связаны одной связью. Если одна из этих связей является двойной связью, это мононенасыщенная жирная кислота. Если есть по крайней мере две двойные связи, они называются многоненасыщенными жирными кислотами. Число в таких названиях, как «жирная кислота омега-3», не представляет собой число двойных связей, а положение первой двойной связи с данного конца цепи.

Вещества сложного строения

Сложные липиды ─ группа веществ, не менее важная для организма, чем простые липиды. Основные свойства этой группы жиров:

  • Участвуют в образовании клеточных мембран, наряду с простыми липидами, а также обеспечивают межклеточные взаимодействия.
  • Входят в состав миелиновой оболочки нервных волокон, необходимой для нормальной передачи нервного импульса.
  • Они являются одним из важных компонентов сурфактанта ─ вещества, обеспечивающего процессы дыхания, а именно предотвращающего спадание альвеол во время выдоха.
  • Многие из них играют роль рецепторов на поверхности клеток.
  • Значение некоторых сложных жиров, выделяемых из спинномозговой жидкости, нервной ткани, сердечной мышцы до конца не выяснена.

К простейшим представителям липидов этой группы относятся фосфолипиды, глико- и сфинголипиды.

Какие липиды нам нужны?

Насыщенные жирные кислоты, такие как те, которые содержатся в масле или жирном мясе, не являются существенными. Это означает, что организм способен синтезировать его сам по другим путям метаболизма из других веществ. С другой стороны, ненасыщенные жирные кислоты всех типов являются фундаментальными и должны потребляться диетой. Насыщенные или ненасыщенные жирные кислоты поступают как из животных, так и из растительных продуктов. Следует, однако, отметить, что присутствие ненасыщенных жирных кислот значительно выше в растительных продуктах.

Холестерин

Холестерин является веществом липидной природы с наиболее важным значением в медицине, так как нарушение именно его обмена негативно сказывается на состоянии всего организма.

Часть холестерина поступает внутрь с пищей, а часть ─ синтезируется в печени, надпочечниках, половых железах и коже.

Однако ассимиляция липидов растительного происхождения несколько сложнее и деликатной, чем липиды животного происхождения. Часто говорят, что ненасыщенные жирные кислоты являются здоровыми и важными, тогда как насыщенные жирные кислоты обычно воспринимаются как вредные, хотя они также жизненно важны. Эта плохая репутация обусловлена ​​избытком насыщенных жиров в текущем продовольственном снабжении. Чрезмерное потребление насыщенных жирных кислот связано со многими «цивилизационными» заболеваниями, такими как ожирение, повышенные липиды крови и артериосклероз, в то время как диспропорция на ненасыщенные жирные кислоты способствует воспалению в организме и может приводить к реакциям со свободными радикалами.

Он также участвует в образовании клеточных мембран, синтезе гормонов и других химически активных веществ, а также участвует в метаболизме липидов в теле человека. Показатели именно холестерина в крови часто исследуются врачами, так как они показывают состояние обмена липидов в организме человека в целом.

Липиды имеют свои особые транспортные формы ─ липопротеины. С их помощью они могут переноситься с током крови, не вызывая эмболии.

Каковы плохие липиды?

Самое главное - найти правильный баланс между насыщенными, мононенасыщенными и многонасыщенными жирными кислотами. Единственными липидами, которые для нас не являются жизненно важными и которые, наоборот, опасны для здоровья, являются трансжирные кислоты или гидрогенизированные жирные кислоты. При нагревании структура ненасыщенного липида модифицируется: он стабилизируется и продукт становится более долговечным. Этот процесс также изменяет положение двойных связей. Вот почему существуют значительные количества трансжирных кислот в промышленных товарах, фаст-фудах, жареных продуктах, тестах и ​​холодных мясных продуктах.

Нарушения жирового обмена быстрее и ярче всего проявляются нарушениями обмена холестерина, преобладанием атерогенных его переносчиков (так называются липопротеины низкой и очень низкой плотности) над антиатерогенными (липопротеины с высокой плотностью).

Основным проявлением патологии липидного обмена является развитие атеросклероза.

Тело неспособно должным образом ассимилировать эту искусственно измененную структуру, потому что она аналогична насыщенному липиду, хотя это ненасыщенные жирные кислоты. Они также подозреваются в развитии гипертонии и диабета, и даже провоцируют их. На этом этапе следует отметить, что трансжирные кислоты также присутствуют в небольших количествах в натуральных продуктах животного происхождения, которые происходят во время бактериальных метаболических процессов - в частности, в пищеварительном тракте жвачных животных - и в небольших количествах В некоторых пищевых маслах при нагревании.

Проявляет он себя сужением просвета артериальных сосудов по всему организму. В зависимости от преобладания в сосудах различных локализаций развивается сужение просвета коронарных сосудов (сопровождающееся стенокардией), сосудов головного мозга (с нарушениями запоминания, слуха, возможными головными болями, шумом в голове), сосудов почек, сосудов нижних конечностей, сосудов органов пищеварения с соответствующей симптоматикой.

Липиды не жирны!

Избыток насыщенных и трансжирных кислот в питании заработал диетические жиры в целом за их плохую репутацию. Основная цель - не глотать как можно меньше жирных кислот, а тщательно выбирать и ухаживать за пропорциями. Самое главное - обратить внимание на качество липидов. Это не означает, что количество не играет никакой роли. Как и все, речь идет о поиске хорошего баланса. Но это качество, то есть тип жирных кислот, все это имеет значение. Какая пропорция выгодна для нашего тела, каковы индивидуальные различия: вы скоро обнаружите ответы на эти волнующие вопросы и многое другое.

Таким образом, липиды одновременно являются незаменимым субстратом для многих процессов в организме и, в то же время, при нарушении жирового обмена, могут стать причиной многих заболеваний и патологических состояний. Поэтому, жировой обмен требует за собой контроля и коррекции при возникновении такой необходимости.

Липиды являются одним из трех основных семейств питательных веществ с белками и углеводами. Они играют несколько ролей в человеке, главным образом обеспечивая: Структурную функцию, потому что мембраны, которые окутывают каждую из наших клеток, очень богаты липидами. Кроме того, в липидах пищи присутствуют определенные витамины, называемые жирорастворимыми витаминами, поэтому важно потреблять их в достаточных количествах. Липиды образуют группу высокодифференцированных гидрофобных молекул, включая, среди прочего, жиры, триглицериды, стеролы и даже жирорастворимые витамины.

Липиды (от греч. lipos – жир) – это гетерогенная группа органических веществ, нерастворимых в воде, но растворимых в аполярных органических растворителях (хлороформ, бензол, эфир, ацетон, этанол и др.).

1. Биологические функции липидов

1.Структурная . Участвуют в структурно-функциональной организации мембраннных систем клетки.

2.В качестве структурных компонентов клетки участвуют в передаче нервного импульса (в нервной ткани содержится 20–25 % фосфолипидов).

3.Энергетическая . Липиды являются резервом энергетического топлива. Так, например, триацилглицериды (ТАГ) при расщеплении 1 г дают 38,9 кДж энергии (это в 2,5 раза больше, чем при сгорании такого же количества углеводов или белков).

4.Липиды так же, как белки и углеводы, являются источником эндогенной воды. При окислении 100 г жира образуется 107,1 г воды, углеводов – 55,5 г, белков – 41,3 г.

5.Защитная . Жировая ткань защищает внутренние органы от травм. Кожный жир смазывает покровы, предохраняет их от высыхания и растрескивания. Жиры участвуют в образовании липидных компонентов кожи позвоночных, восковой пленки на поверхности листьев и плодов, предохраняющей их от потери воды, в образовании клеточных стенок бактерий и кутикулы насекомых.

6.Терморегуляторная . Жиры участвуют в процессах терморегуляции, защищая внутренние органы от охлаждения.

7.Транспортная . Транспортируют жирорастворимые компоненты в процессе всасывания.

2. Классификация липидов

До настоящего времени единой строго научной классификации нет, что объясняется многообразием структурных компонентов, входящих в их состав. Существует несколько классификаций.

В соответствии со структурной классификацией липиды подразделяют на однокомпонентные (липидные мономеры) и многокомпонентные. В свою очередь многокомпонентные липиды подразделяются на простые и сложные (липоиды).

К липидным мономерам относятся высшие углеводороды, высшие алифатические спирты, альдегиды, кетоны, изопреноиды и их производные, высшие аминоспирты (сфингозины), жирные кислоты, высшие полиолы.

Простые многокомпонентные липиды – это эфиры высокомолекулярных алкоголей и жирных кислот. К ним относятся ацилглицериды (жиры), воски, стериды.

Сложные липиды (липоиды) являются сложными эфирами, содержащими также азотистые основания и радикалы фосфорной кислоты. К ним относятся фосфолипиды, гликолипиды, липопротеиды.

По степени полярности липиды подразделяются на нейтральные (неполярные) и полярные. Нейтральные липиды – это нейтральные жиры.

По отношению к щелочам выделяют омыляемые и неомыляемые липиды. Омыляемая фракция липидов подвергается щелочному гидролизу. Неомыляемые липиды – соединения, не подвергающиеся щелочному гидролизу (липидные мономеры, стерины, простые эфиры, жирорастворимые витамины).

По расположению в тканях и функциям липиды подразделяются на структурные (плазматические) и запасные (депозитные). Структурные липиды входят в состав клеточных мембран и протоплазмы. К ним относятся фосфо-, глико- и сульфолипиды. Депозитные липиды являются лабильной составной частью тканей, их содержание находится в прямой зависимости от упитанности организма (жиры).

Ряд авторов подразделяет липиды на три основные группы: нейтральные липиды, фосфолипиды и сфинголипиды.

Незаменимые (эссенциальные ) жирные кислоты

Линолевая и линоленовая кислоты не синтезируются в организме человека, арахидоновая – синтезируется из линолевой с помощью витамина В6.

Воски

Воски – это сложные эфиры высших одноосновных жирных кислот () и первичных одноатомных высокомолекулярных спиртов (). Химически малоактивны, устойчивы к действию бактерий. Ферменты их не расщепляют.

Общая формула воска:

R1–O–CO–R2,

где R1O- – остаток высокомолекулярного одноатомного первичного спирта; R2CO – остаток жирной кислоты, преимущественно с четным числом атомов С.

Воски широко распространены в природе. Воски образуют защитное покрытие на листьях, стеблях, плодах, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Воски образуют защитную смазку на коже, шерсти, перьях, содержатся в наружном скелете насекомых. Они являются важным компонентом воскового налета виноградной ягоды – прюина. В оболочках семян сои содержание воска 0,01 % от массы оболочки, в оболочках семян подсолнечника – 0,2 %, в оболочке риса – 0,05 %.

Характерным примером воска является пчелиный воск, содержащий спирты с 24–30 атомами С (мирициловый спирт C30H61OH), кислоты CH3(CH2)n COOH, где n = 22–32, и пальмитиновую кислоту (C30H61 – O–СO–C15H31).

Спермацет

Примером животного воска является воск спермацет. Сырой (технический) спермацет получают из головной спермацетовой подушки кашалотов (или других зубатых китов). Сырой спермацет состоит из белых чешуйчатых кристаллов спермацета и спермацетового масла (спермоля).

Чистый спермацет представляет собой эфир цетилового спирта (C16H33OH) и пальмитиновой кислоты (С15Н31СО2Н). Формула чистого спермацета С15Н31СО2C16H33.

Спермацет применяется в медицине как компонент мазей, обладающих заживляющим действием.

Спермоль – жидкий воск, светло-желтая маслянистая жидкость, смесь жидких эфиров, содержащих олеиновую кислоту C17H33СООН и олеиновый спирт C18H35. Формула спермоля C17H33СО–О–C18H35. Температура плавления жидкого спермацета 42…47 0С, спермацетового масла – 5…6 0С. Спермацетовое масло содержит больше ненасыщенных жирных кислот (иодное число 50–92), чем спермацет (иодное число 3–10).

Стерины и стериды

Стерины (стеролы ) – это высокомолекулярные полициклические спирты, неомыляемая фракция липидов. Представителями являются: холестерин или холестерол, оксихолестерин или оксихолестерол, дегидрохолестерин или дегидрохолестерол, 7-дегидрохолестерин или 7-дегидрохолестерол, эргостерин или эргостерол.

В основе строения стеринов лежит кольцо циклопентанпергидрофенантрена, содержащее полностью гидрированный фенантрен (три циклогексановых кольца) и циклопентан.

Стериды – сложные эфиры стеринов – являются омыляемой фракцией.

Стероиды – это биологически активные вещества, основой строения которых являются стерины.

В ХУП веке из желчных камней был впервые выделен холестерин (от греч. сhole – желчь).

Он содержится в нервной ткани, мозге, печени, является предшественником биологически активных соединений стероидов (например: желчных кислот, стероидных гормонов, витаминов группы D) и биоизолятором, защищающим структуры нервных клеток от электрического заряда нервных импульсов. Холестерин в организме находится в свободной (90 %) форме и в виде эфиров. Имеет эндо- и экзогенную природу. Эндогенный холестерин синтезируется в организме человека (70–80 % холестерина синтезируется в печени и других тканях). Экзогенный холестерин – это холестерин, поступающий с пищей.

Избыток холестерина вызывает появление атеросклеротических бляшек на стенках артерий (атеросклероз). Нормальный уровень
200 мг холестерина на 100 мл крови. При повышении уровня холестерина в крови возникает опасность заболевания атеросклерозом.

Суточное потребление холестерина с пищей не должно превышать 0,5 г.

Большее количество холестерина содержится в яйцах, сливочном масле, субпродуктах. У рыб высокое содержание холестерина обнаружено в икре (290–2200 мг/100 г) и молоках (250–320 мг/100 г).

Жиры (ТАГ, триацилглицериды )

Жиры представляют собой сложные эфиры глицерина и высших жирных кислот, являются омыляемой фракцией.

В зависимости от состава жирных кислот ТАГ бывают простыми (имеют одинаковые остатки жирных кислот) и смешанными (имеют разные остатки жирных кислот). Природные жиры и масла содержат в основном смешанные ТАГ.

Жиры подразделяются на твердые и жидкие. Твердые жиры содержат насыщенные карбоновые кислоты, к ним относятся животные жиры. Жидкие жиры содержат ненасыщенные кислоты, к ним относятся растительные масла, рыбий жир.

Для жиров рыб характерны полиеновые жирные кислоты, имеющие линейную цепь и содержащие 4–6 двойных связей.

Высокая биологическая ценность рыбьего жира определяется тем, что рыбий жир содержит:

  • биологически активные полиеновые жирные кислоты (докозагексаеновая, эйкозапентаеновая). Полиеновые кислоты уменьшают риск возникновения тромбоза, атеросклероза;
  • витамин А;
  • витамин Д;
  • витамин Е;
  • микроэлемент селен.

Жиры рыб подразделяются на низковитаминные и высоковитаминные. В низковитаминных рыбьих жирах содержание витамина А меньше 2000 МЕ в 1 г., в высоковитаминных – превышает 2000 МЕ в 1 г. Кроме того, промышленным способом вырабатывают концентраты витамина А – жиры, в которых содержание витамина А > 104 МЕ
в 1 г.

Показатели качества жиров

Для оценки качества жиров используются следующие физико-химические константы.

1. Кислотное число.

Характерным свойством жиров является их способность к гидролизу. Продуктами гидролиза являются свободные жирные кислоты, глицерин, моноацилглицериды и диацилглицериды.

Ферментативный гидролиз жиров протекает с участием липазы. Это обратимый процесс. Для оценки степени гидролиза и количества свободных жирных кислот определяют кислотное число.

Кислотное число – это количество миллиграммов КОН, идущее на нейтрализацию всех свободных жирных кислот, которые содержатся в 1 г жира. Чем больше кислотное число, тем выше содержание свободных жирных кислот, тем интенсивнее идет процесс гидролиза. Кислотное число возрастает при хранении жира, т. е. является показателем гидролитической порчи.

Кислотное число медицинского жира должно быть не более 2,2, витаминизированного жира, предназначенного для ветеринарных целей, – не более 3, пищевого жира – 2,5.

  1. Пероксидное число

Пероксидное число характеризует процесс окислительной порчи жиров, в результате которой образуются пероксиды.

Пероксидное число определяется количеством граммов иода, выделенным из иодида калия в присутствии ледяной уксусной кислоты, выделяя из него I2; образование свободного йода фиксируется с помощью крахмального клейстера:

ROOH + 2KI + H2O = 2KOH + I2 + ROH.

Для повышения чувствительности исследования определение пероксидного числа проводят в кислой среде, действуя на пероксиды не иодистым калием, а иодистоводородной кислотой, образующейся из иодида калия при воздействии кислоты:

KI + CH3COOH = HI + CH3COOK

ROOH + 2HI = I2 + H2O + ROH

Выделившийся иод немедленно оттитровывают раствором тиосульфата натрия.

3. Водородное число

Водородное число, так же, как и иодное, является показателем степени ненасыщенности жирных кислот.

Водородное число – количество миллиграммов водорода, необходимое для насыщения 100 г исследуемого жира.

1. Число омыления

Число омыления – это количество миллиграммов КОН, необходимое для нейтрализации всех свободных и связанных кислот, содержащихся в 1 г жира

Число омыления характеризует природу жира: чем меньше молярная масса ТАГ, тем больше число омыления. Число омыления характеризует среднюю молекулярную массу глицеридов и зависит от молекулярной массы жирных кислот.

Число омыления и кислотное число характеризуют степень гидролитической порчи жира. На величину числа омыления влияет содержание неомыляемых липидов.

1. Альдегидное число

Альдегидное число характеризует окислительную порчу жиров, содержание альдегидов в жире. Альдегидное число определяется фотоколориметрическим методом, основанном на взаимодействии карбонильных соединений с бензидином; определение оптической плотности проводится при длине волны 360 нм. Для построения калибровочной кривой используется коричный альдегид (b-фенилакролеин C6H5CH=CHCHO). Альдегидное число выражается в миллиграммах коричного альдегида на 100 г жира. Альдегидное число – показатель качества вяленой рыбы, а также второго этапа окислительной порчи жиров.

2. Эфирное число

Эфирное число – это количество милиграммов КОН, необходимое для нейтрализации освобождающихся при омылении эфирных связей жирных кислот (связанных жирных кислот) в 1 г жира. Эфирное число определяют по разности числа омыления и кислотного числа. Эфирное число характеризует природу жира.

Сложные липиды (липоиды)

К сложным липидам относятся фосфолипиды, гликолипиды и липопротеиды.

Фосфолипиды – это липиды, молекулы которых состоят из остатков спиртов (глицерина, сфингозина), карбоновых кислот, фосфорной кислоты, азотистых оснований и остатков аминокислот. В молекуле фосфолипидов имеются заместители двух типов: гидрофильные и гидрофобные. Гидрофильными (полярными) группировками являются остатки фосфорной кислоты и азотистого основания, гидрофобными (неполярными) – углеводородные радикалы. Фосфолипиды – это основной компонент клеточных мембран. Содержатся в нервной ткани, мозге, необходимы для нормального функционирования центральной нервной системы. Фосфолипиды являются обязательной составной частью растений.

Фосфатидные кислоты – ключевые промежуточные соединения при биосинтезе всех классов фосфолипидов в организме.

Фосфолипиды подразделяются на глицерофосфатиды (фосфоглицериды) и сфингофосфатиды.

Фосфоглицериды – это фосфолипиды, молекулы которых включают спирт глицерин.

Представителями глицерофосфатидов являются кефалин и лецитин.

Самый распространенный компонент большинства мембран животных клеток (мозг, надпочечники, эритроциты).

Сфинголипиды – сложные эфиры алифатического аминоспирта сфигозина.

Сфингомиелины – фосфорсодержащие сфинголипиды – содержатся в мозге, нервной ткани.

Фосфоплазмалогены – фосфорсодержащие плазмалогены, которые входят в состав мембран клеток головного и спинного мозга, сердечной мышцы. Так, фосфолипиды составляют 25–30 % сухой массы мозга, из которых на долю плазмалогенов приходится 50–90 %. Плазмалогены присутствуют в различных видах простейших, морских и сухопутных беспозвоночных, рыбах, микроорганизмах, растениях.

Гликолипиды – это комплексы липидов с углеводами (углеводы – гексозамины и сиаловые кислоты). Гликолипиды подразделяются на цереброзиды и ганглиозиды. Они широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга, они локализованы на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности. Главной формой гликолипидов в животных тканях являются гликосфинголипиды, которые содержат церамид. Простейшими соединениями этой группы является галактозилцерамид и глюкозилцерамид. Галактозилцерамид – это главный гликосфинголипид мозга и других нервных тканей. В его состав входят С24-жирные кислоты. Ганглеозиды – это более сложные гликосфинголипиды, образующиеся из глюкозилцерамида и содержащие одну или несколько молекул сиаловой кислоты. В тканях человека доминирующей сиаловой кислотой является нейраминовая кислота.

Липопротеиды – это комплексы липидов с белками. По строению это сферические частицы, наружная оболочка которых образована белками, а внутренняя часть – липидами. Функция липопротеидов – транспорт липидов по крови. В зависимости от количества белка и липидов липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и липопротеиды высокой плотности (ЛПВП).

Хиломикроны – наиболее крупные из липопротеидов – содержат 98–99 % липидов и 1–2 % белка. Образуются в клетках слизистой кишечника, обеспечивают транспорт липидов из кишечника в лимфу, а затем – в кровь.

Похожие статьи