Дифференцировка клетки. Дифференцировка клеток в многоклеточном организме Четкая дифференцировка тела называется

Возникновение целого растительного организма определяется не только размножением и растяжением клеток, но и их дифференциацией.

Дифференциация связана со специализацией клеток для выполнения различных функций в организме. Наиболее ранняя дифференциация клеток происходит во время эмбриогенеза, когда образуются ризогенные и каулогенные зачатки. Хотя дальнейшая судьба клеток, составляющих эти зачатки, различна, они внешне не отличаются друг от друга.

В результате дальнейшего развития происходит дифференциация клеток, связанная с выполнением следующих функций: защитных (эпидермис и субэпидермис), фотосинтетических (губчатая и палисадная паренхима листа), поглотительной (клетки корневой системы), проводящих (проводящие ткани) и механических (механические ткани стебля и проводящих пучков). Кроме того, меристематические ткани, которые в наименьшей степени отличаются от эмбриональных клеток, специализированы для размножения клеток и первоначальной их дифференциации. Эти ткани выполняют также функции генеративного размножения. Клетки разных типов дифференциации скреплены между собой массой паренхимных клеток, подвергшихся наименьшей дифференциации, состоящей главным образом в их растяжении.

В настоящее время считается, что каждое дифференцированное состояние живых клеток характеризуется определенным сочетанием активных и неактивных участков генома и, следовательно, определенным соотношением синтезов различных белков. При этом то или иное дифференцированное состояние достигается не произвольно, а закономерно, путем смены различных состояний. Именно поэтому не наблюдается прямой передифференцировки клеток одного типа в клетки другого типа. Между ними обязательно имеется этап дедифференциации, который включает в себя активацию деления клеток в дифференцированных тканях.

Дифференциация клеток в организме возникает в результате межклеточного взаимодействия и, наиболее вероятно, в результате воздействия метаболитов, вырабатываемых одними клетками, на другие. В качестве примеров роли межтканевых взаимодействий можно привести детерминирующую роль верхушечной меристемы в образовании листового зачатка, развивающегося листа или стеблевой почки в формировании камбиальных тяжей и проводящих пучков. Показано, что теми метаболитами, которые определяют дифференциацию клеток в проводящую ткань, являются ауксин и сахароза. Если зачаток листа (Osmunda cinnamomea) изолировали на ранних этапах развития, то он превращался в стеблевое образование, а при сохранении физиологического контакта с более развитыми детерминированными листьями - в лист. Так же влиял гомогенат детерминированных листьев, причем стимул проходил через миллипоровый фильтр, но не проникал через пластинку слюды.

В некоторых случаях авторы предполагают наличие специальных веществ, необходимых для того или иного типа дифференциации: антезины, флориген - как факторы образования цветов, индукторы образования клубеньков у бобовых, фактор роста клеток листа, гормон образования колленхимы, фактор, активирующий ризогенез. Но в большинстве случаев возникновение клеток разных типов дифференциации объясняется с помощью известных групп фитогормонов.

Возможны два типа регулирующего действия фитогормонов на дифференциацию. В одних случаях гормон необходим на каком-то одном этапе, а дальнейший ход процесса может осуществляться и без него. Здесь гормон выступает в роли фактора, влияющего на выбор клетками того или иного пути дифференциации, но после того как выбор сделан, гормон больше не нужен. Такой характер действия фитогормонов можно видеть, например, во время индукции корнеобразования с помощью ауксина и кинетина: после того как произошло заложение корневых зачатков, дальнейшее присутствие ауксина и кинетина оказывается уже не нужным и даже ингибирующим. Возможно, это связано с тем, что в развивающемся корне возникает собственная система образования этих фитогормонов.

Другой способ, которым осуществляется действие фитогормонов на дифференциацию, состоит в том, что присутствие фитогормона необходимо для поддержания клеток в определенном дифференцированном состоянии. В этом случае уменьшение концентрации или полное исчезновение фитогормона приводит к утрате клетками данного состояния. Например, состояние «недифференцированного» каллусного роста ткани риса, овса, спаржи поддерживается лишь в присутствии ауксина, а при его отсутствии происходит органогенез листьев, корней и стеблей.

Примером, показывающим, что между этими крайними случаями могут быть переходы, является образование тяжа проводящих тканей в месте присоединения листа к стеблю. Клетки коровой паренхимы под влиянием ауксина, поступающего из листа, делятся и образуют вначале прокамбиальный тяж, который затем формирует ксилемные и флоэмные клетки. Если лист удалить на стадии прокамбиального тяжа, то клетки возвращаются вновь в паренхимное состояние; но если вместо листа нанести на черешок агаровый кубик или ланолиновую пасту с ауксином, то начавшийся процесс дифференциации завершится образованием проводящего пучка. Этот пример показывает, что имеется определенный период во время дифференциации, характеризующийся тем, что изменения, происходящие в нем, являются обратимыми. Различие между двумя крайними случаями, приведенными выше, по-видимому, состоит в разной продолжительности этого периода обратимости вызванных фитогормоном изменений.

В большинстве случаев переход клеток к дифференциации связан с прекращением их размножения. Это послужило причиной возникновения гипотезы о том, что дифференциация клеток наступает вследствие физиологического блокирования их деления, в результате чего метаболизм клетки направляется не на замыкание митотического цикла, а в сторону от него. При дедифференциации происходит возвращение клеток в митотический цикл. Эта гипотеза подтверждается данными по индукции органогенеза и дифференциации в культуре ткани при удалении из среды факторов, необходимых для размножения каллусных клеток.

В этом смысле можно интерпретировать и наши данные о том, что устранение из среды ауксина - фактора, необходимого для размножения клеток, приводило к их растяжению, а добавление кинетина при этом вызывало возникновение меристемоподобных и дифференцированных клеток. Однако следует признать, что имеющихся данных еще недостаточно, чтобы считать одноактное блокирование митотического цикла одной из причин перехода к дифференциации клеток.

В нашей работе были приведены литературные и собственные экспериментальные данные, которые позволяют считать, что при переходе к растяжению и дифференциации клеток деление их прекращается не одноактно, а за счет постепенного увеличения длительности митотического цикла на протяжении нескольких циклов. Кроме того, существуют типы дифференциации клеток, которые не связаны с прекращением деления. Особенно часто такие случаи наблюдаются у животных клеток, но имеются и у растительных. Например, дифференцированное состояние, характерное для камбиальных клеток, не связано с прекращением их деления, с прерыванием митотического цикла.

Влияние фитогормонов на дифференциацию клеток наиболее часто изучается на примерах индукции образования элементов проводящей ткани из недифференцированных клеток, а также по влиянию на активность камбия и на образование его дериватов - ксилемы и флоэмы. В опытах Ветмора и Рира каллусную ткань высаживали на так называемую поддерживающую среду, в которой была уменьшена концентрация сахарозы (1% вместо 4%) и давалось минимальное количество ауксина 0,05 мг/л ИУК вместо 1 мг/л 2,4-Д по сравнению со средой для активной пролиферации каллуса (морковь). При нанесении на поверхность каллуса, находящегося на поддерживающей среде ауксина (0,05-1 мг/л) и сахарозы (1,5-4%) в недифференцированной каллусной массе возникали клубочки проводящей ткани, расположенные по окружности от места введения. Диаметр этой окружности зависел от концентрации ауксина (чем выше концентрация, тем больше диаметр).

Это говорит о том, что существует определенная концентрация ауксина, при которой возможна дифференциация клеток. Состав возникших клубочков регулировался соотношением сахарозы и ауксина: сахароза способствовала преобладанию флоэмных элементов, а ИУК - ксилемных. Особенно интересно, что индукция дифференциации происходила при создании градиента концентраций ауксина и сахарозы, тогда как в его отсутствие клетки при этих же концентрациях ауксина и сахарозы могли делиться, но дифференциации не наступало.

Можно предположить, что для индукции дифференциации клеток необходимо возникновение локальных очагов делящихся клеток, окруженных неделящимися клетками. При размножении клетки, оказавшиеся в центре очага, превращались в ксилемные, а снаружи - во флоэмные. Это совпадает с распределением первичной ксилемы и флоэмы в верхушках стеблей и кончиках корней.

Подобного рода опыты, в которых были получены такие же результаты, проводились с каллусной тканью фасоли. В этих опытах было показано, что сахароза несет специфические регулирующие функции помимо роли источника углерода. Ее действие воспроизводилось только мальтозой и трегалозой. В месте образования клубочков концентрация ИУК составляла 25 γ/л, а сахарозы - 0,75%. Было показано, что если сначала давать ИУК, а затем сахарозу, то дифференциация клеток наступала; если же сначала вносить сахарозу, а затем ИУК, то дифференциации не: происходило. Это дало возможность авторам предположить, что роль ИУК состоит лишь в индукции деления клеток, а дальнейшая дифференциация молодых клеток определяется сахарозой.

Индукция возникновения трахеидных элементов под влиянием ИУК наблюдалась также в изолированной сердцевинной паренхиме стебля табака, колеуса, под влиянием НУК и ГК в эксплантантах из клубня топинамбура, под влиянием ИУК и кинетина в паренхиме стебля капусты, при этом большую роль в судьбе клеток играло соотношение ИУК и кинетина. В других работах кинетин также выступал как фактор, усиливающий дифференциацию ксилемных элементов и образование лигнина. В опытах со срезами междоузлий колеуса было показано, что возникновение проводящих тканей под влиянием ИУК угнеталось рентгеновским облучением и актиномицином D, причем актиномицин D действовал только в течение первых двух дней индукции.

Таким образом, сам феномен индуцирующего влияния сахарозы и ИУК на дифференциацию клеток в элементы проводящей ткани установлен достаточно основательно. Однако физиологический и биохимический анализ этого действия только начинается.

Следует обратить внимание на то, что в кусочках паренхимной ткани под влиянием ауксина индуцируются элементы проводящей ткани, но сама проводящая ткань в виде тяжей не образуется. Ранее мы уже приводили факт индуцирующего действия ауксина на дифференциацию паренхимных клеток стебля в проводящие ткани листового тяжа. В этом случае в результате индукции возникает тяж проводящей ткани, а не клубочек дифференцированных клеток. Вероятно, это связано с тем, что ауксин поступает не в результате простой диффузии, а с помощью полярного транспорта. Значение полярного транспорта ауксина в регенерации проводящих тканей колеуса показано в работах Джэкобса и Томпсона. Опыты этих авторов свидетельствуют о том, что, по-видимому, и в целом растении возникновение проводящей ткани контролируется фитогормонами, в частности ауксином.

В опытах Торри с изолированными корнями гороха было показано, что активация камбия и образование вторичных проводящих тканей в них контролируется ауксином. В изолированных корнях редиса ауксин и кинетин индуцировали эти процессы, а мезоинозит значительно усиливал их. Дигби и Уоринг показали, что ИУК и ГК в отдельности слабо стимулировали деятельность камбия и образование ксилемы в побегах тополя и винограда с удаленными почками. Значительная активация наблюдалась лишь при их совместном применении. При этом преобладание ГК в смеси приводило к сдвигу в сторону более активного образования флоэмы, а преобладание ИУК - в сторону ксилемы.

Взаимодействие ГК с ИУК и самостоятельное действие ГК на образование проводящих тканей наблюдалось и в других работах с целыми растениями. У покоящихся сеянцев яблони НУК вызывала активацию камбия, но при этом образовывались только паренхимные клетки, появление трахеид происходило лишь при совместном действии НУК и бензиладенина.

Таким образом, можно предположить, что в целом растении контроль активности образования проводящих тканей осуществляется с помощью регулирования концентрации фитогормонов (ауксинов, цитокининов и гиббереллинов).

Дифференциация клеток в трахеиды, членики сосудов и в ситовидные трубки связана с их дегенерацией вплоть до отмирания. При возникновении органогенных структур в недифференцированном каллусе индуцируется образование меристематических клеток, значительно более энергичных в смысле интенсивности метаболизма и способности к дальнейшей дифференциации, чем клетки исходной каллусной ткани.

Существует два способа индукции возникновения организованных структур в недифференцированном каллусе: адвентивный эмбриогенез и органогенез.

Адвентивный эмбриогенез состоит в том, что при соответствующих условиях некоторые клетки каллуса многократно делятся с образованием плотного глобулярного скопления мелких меристематических клеток, которые затем дают начало эмбриоиду. Условия, способствующие возникновению эмбриоидов, различны, но во всех случаях необходимо уменьшение концентрации или полное исключение из состава среды ауксина. Хальперин и Ветерел связывают это с тем, что концентрации ауксина, применяемые для массового размножения клеток, слишком высоки для того, чтобы в возникшей предэмбриоидной глобуле мог произойти процесс поляризации на каулогенную и ризогенную часть.

Однако каковы факторы, необходимые для возникновения предэмбриоидной глобулы, пока неизвестно. В некоторых случаях этому способствует кокосовое молоко, кинетин, соли аммония, однако в других они либо не нужны, либо не играют решающей роли.

Следует отметить, что эмбриоиды, по-видимому, не возникают из свободной одиночной клетки, а всегда н какой-нибудь величины каллусной массе. В этой каллусной массе дать начало эмбриоиду может и одна клетка. Поэтому важная роль в образовании эмбриоидов принадлежит, вероятно, факторам межклеточного взаимодействия, действующим на коротких дистанциях, в пределах небольших каллусных комочков.

Органогенез также начинается с образования скоплений мелких, богатых цитоплазмой клеток - меристематических очагов. Эти очаги дают начало либо стеблевым почкам, либо корневым зачаткам, т. е. они имеют начальную поляризованность. В некоторых случаях в массе каллусной ткани образуются одновременно стеблевые почки и корневые зачатки, между которыми затем устанавливается связь с помощью проводящих пучков. Факторами, определяющими характер возникающих зачатков и индуцирующими их возникновение, являются ауксин и кинетин. Индукция стеблевых почек вызывается повышением концентрации кинетина и уменьшением концентрации ауксина в среде, индукция корнеобразования больше зависит от ауксина, чем от кинетина, при этом благоприятно сказывается замена 2,4-Д на ИУК или НУК. Гиббереллин чаще всего подавляет образование стеблевых почек, но может усилить рост стебля после его возникновения. В некоторых случаях ткань не способна к образованию корней, и поэтому возникшие стеблевые почки помещают в условия, способствующие возникновению у них адвентивных корней. Здесь обнаруживается зависимость тех или иных этапов органогенеза от последовательности применения фитогормонов, на что обращают внимание Стюард с сотрудниками.

Работы по индукции органогенеза и эмбриогенеза и по индукции образования элементов проводящей ткани имеют общее в том, что первоначально при этих процессах возникает неоднородность в однородной недифференцированной ткани, так как процессу преобразования в новые типы клеток подвергается лишь часть обрабатываемых клеток.

Вероятно, при возникновении этой неоднородности в системе необходимо, чтобы концентрация ауксина в ткани была значительно ниже оптимальной для размножения клеток. Тогда в ткани может установиться определенный градиент концентрации и возникнуть лишь локальные очаги размножения клеток. Эти очаги сами становятся источниками ауксина, вследствие чего воссоздается система полярного его транспорта и появляются условия для построения упорядоченной системы.

Другие фитогормоны, по-видимому, либо способствуют либо мешают этому процессу в значительной степени, но могут оказывать и самостоятельное, независимое действие. Следует отметить, что условия, необходимые для возникновения первоначальной неоднородности, и условия, необходимые для последующего развития возникающих структур, могут значительно различаться, в том числе и по отношению к экзогенным фитогормонам. Так, например, кинетин очень важен для возникновения меристематических очагов и начальной их специализации у ткани табака, а гиббереллины в это время действуют отрицательно. Но в последующем рост и развитие возникших зачатков, напротив, тормозится кинетином, но стимулируется гиббереллином.

Неоднородный характер реакции клеток во время индукции различных типов дифференциации затрудняет изучение роли фитогормонов, особенно на первоначальных фазах реакции, обычными физиологическими и биохимическими методами. В этом случае большое значение приобретают цитологические и цитохимические методы, с помощью которых получены первые успехи в идентификации первоначальных изменений в индуцируемых клетках. Показано, что те клетки, которые в будущем превратятся в органогенный зачаток, первоначально приобретают отличие от окружающих клеток, состоящее в повышенном содержании крахмала. Гиббереллин вызывает гидролиз крахмала (вероятно, за счет активации амилазы) и одновременно подавляет органогенез.

Имеются многочисленные примеры влияния фитогормонов на образование генеративных органов, определение пола у растений с раздельнополыми цветами, изменение формы листа и характера дифференциации клеток в листьях, полученные при обработке целого растения. Во всех этих случаях фитогормоны также выступают в роли факторов, регулирующих дифференциацию клеток. Однако при обработке фитогормонами целых растений наблюдаемый эффект может быть связан не только с их непосредственным действием на дифференцирующиеся клетки, но и с влиянием на всю гормональную систему. Поэтому такие работы нуждаются в тщательной проверке с применением методов анализа фитогормонов в растениях, прежде чем их можно будет использовать как примеры влияния фитогормонов на тот или иной тип дифференциации.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Гаструляция и последующие стадии развития организмов сопровождаются процессами роста и дифференцировки клеток.

Рост - это увеличение общей массы и размеров организма в процессе развития. Он происходит на клеточном, тканевом, органном и организменном уровнях. Увеличение массы в целом организме отражает рост составляющих его структур.

Рост обеспечивается следующими механизмами:

Увеличением числа клеток;

Увеличением размера клеток;

Увеличением объема и массы неклеточного вещества.

Различают два типа роста: ограниченный и неограниченный. Неограниченный рост продолжается на протяжении всего онтогенеза (на протяжении жизни особи, до и после рождения), вплоть до смерти. Таким ростом обладают, например, рыбы. Многие позвоночные характеризуются ограниченным ростом, т.е. достаточно быстро выходят на плато своей биомассы.

Выделяют несколько типов роста клеток.

Ауксентичный - рост, идущий путем увеличения размеров клеток. Это редкий тип роста, наблюдающийся у животных с постоянным количеством клеток, таких, как коловратки, круглые черви, личинки насекомых. Рост отдельных клеток нередко связан с полиплоидизацией ядер.

Пролиферационный - рост, протекающий путем размножения клеток. Он известен в двух формах: мультипликативный и аккреционный.

Мультипликативный рост характеризуется тем, что обе клетки, возникшие от деления родоначальной клетки, снова вступают в деление. Мультипликативный рост очень эффективен и поэтому в чистом виде почти не встречается или очень быстро заканчивается (например, в эмбриональном периоде).

Аккреционный рост заключается в том, что после каждого последующего деления лишь одна из клеток снова делится, тогда как другая прекращает деление. Этот тип роста связан с разделением органа на камбиальную и дифференцированную зоны. Клетки переходят из первой зоны во вторую, сохраняя постоянные соотношения между размерами зон. Такой рост характерен для органов, где происходит обновление клеточного состава.

Пространственная организация роста сложна и закономерна. Именно с ней в значительной мере связана видовая специфичность формы. Это проявляется в виде аллометрического роста. Его биологический смысл состоит в том, что организму в ходе роста надо сохранить не геометрическое, а физическое подобие, т.е. не превышать определенных отношений между массой тела и размерами опорных и двигательных органов. Так как с ростом тела масса возрастает в третьей степени, а сечения костей во второй степени, то для того, чтобы организм не был раздавлен собственной тяжестью, кости должны расти в толщину непропорционально быстро.

Существует предел или лимит Хейфлика (англ. Hayflick limit) - граница количества делений соматических клеток, названа в честь её открывателя Леонарда Хейфлика. В 1961 году Хейфлик наблюдал, как клетки человека, делящиеся в клеточной культуре, умирают приблизительно после 50 делений и проявляют признаки старения при приближении к этой границе. Эта граница была найдена в культурах всех полностью дифференцированных клеток как человека, так и других многоклеточных организмов. Максимальное число делений различно в зависимости от типа клеток и ещё сильнее различается в зависимости от организма. Для большинства человеческих клеток предел Хейфлика составляет 52 деления.

Граница Хейфлика связана с сокращением размера теломер - участков ДНК на концах хромосом. Если клетка не имеет активной теломеразы, как у большинства соматических клеток, при каждом делении клетки размер теломер сокращается, т.к. ДНК-полимераза не способна реплицировать концы молекулы ДНК. Вследствие данного явления теломеры должны укорачиваться весьма медленно - по несколько (3-6) нуклеотидов за клеточный цикл, то есть за количество делений, соответствующее лимиту Хейфлика, они укоротятся всего на 150-300 нуклеотидов. В настоящее время предложена эпигенетическая теория старения, которая объясняет эрозию теломер прежде всего активностью клеточных рекомбиназ, активизирующихся в ответ на повреждения ДНК, вызванные, главным образом, возрастной дерепрессией мобильных элементов генома. Когда после определённого числа делений теломеры исчезают совсем, клетка замирает в определённой стадии клеточного цикла или запускает программу апоптоза - открытого во второй половине 20 века явления плавного разрушения клетки, проявляющегося в уменьшении размера клетки и минимизации количества вещества, попадающего в межклеточное пространство после её разрушения.

Важнейшей характеристикой роста является его дифференциальность . Это означает, что скорость роста неодинакова, во-первых, в различных участках организма и, во-вторых, на разных стадиях развития. Очевидно, что дифференциальный рост оказывает огром­ное влияние на морфогенез. Рост зародыша на разных стадиях сопровождается дифференцировкой клеток. Дифференцировка - это изменения в структуре клеток, связанные со специализацией их функций, и обусловленные активностью определенных генов. Дифференцировка клеток приводит к возникновению как морфологических, так и функциональных различий, обусловленных их специализацией. В процессе дифференцировки менее специализированная клетка становится более специализированной. Дифференцировка меняет функцию клетки, её размер, форму и метаболическую активность.

Различают 4 этапа дифференцировки.

1. Оотипическая дифференцировка на стадии зиготы представлена предположительными, презумптивными зачатками - участками оплодотворенной яйцеклетки.

2. Бластомерная дифференцировка на стадии бластулы заключается в появлении неодинаковых бластомеров (например, бластомеры крыши, дна краевых зон у некоторых животных).

3. Зачатковая дифференцировка на стадии ранней гаструлы. Возникают обособленные участки - зародышевые листки.

4. Гистогенетическая дифференцировка на стадии поздней гаструлы. В пределах одного листка появляются зачатки различных тканей (например, в сомитах мезодермы). Из тканей формируются зачатки органов и систем. В процессе гаструляции, дифференцировки зародышевых листков появляется осевой комплекс зачатков органов.

Возникновение новых структур и изме­нение их формы в ходе индивидуального развития организмов называется морфогенезом. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состо­яние и по большей части необратимым. Главным свойством ацикли­ческих процессов является их пространственно-временная организа­ция. Морфогенез на надклеточном уровне начинается с гаструляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологичес­кие перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого из них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве проте­кает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы.

Дифференцировка - это процесс, в результате которого клетка становится специализированной, т.е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле это изменения, происходящие в клетке на протяжении одного, нередко терминального, клеточного цикла, когда начинается синтез главных, специфических для данного клеточного типа, функциональных белков. Примером может служить Дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем последовательно в другие, более поверхностные слои, происходит накопление кератогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое - в кератин. При этом изменяются форма клеток, строение клеточных мембран и набор органоидов. На самом деле дифференцируется не одна клетка, а группа сходных клеток. Примеров можно привести множество, так как в организме человека насчитывают порядка 220 различных типов клеток. Фибробласты синтезируют коллаген, миобласты - миозин, клетки эпителия пищеварительного тракта - пепсин и трипсин. 338

В более широком смысле под дифференцировкой понимают постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного исходного зачатка. Этот процесс непременно сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловливаемые самим ходом эмбриогенеза, обнаруживаются в период гаструляции.

Зародышевые листки и их производные являются примером ранней дифференцировки, приводящей к ограничению потенций клеток зародыша. На схеме 8.1 представлен пример дифференцировки мезодермы (по В. В. Яглову, в упрощенном виде).

Схема 8.1. Дифференцировка мезодермы

Можно выделить целый ряд признаков, которые характеризуют степень дифференцированности клеток. Так, для недифференцированного состояния характерны относительно крупное ядро и высокое ядерно-цитоплазматическое отношение V ядра /V цитоплазмы (V- объем), диспергированный хроматин и хорошо выраженное ядрышко, многочисленные рибосомы и интенсивный синтез РНК, высокая митотическая активность и неспецифический метаболизм. Все эти признаки изменяются в процессе дифференцировки, характеризуя приобретение клеткой специализации.

Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называют гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития.

В то же время удивительно, что, в сущности, с момента одноклеточной стадии (зиготы) развитие из нее организма определенного вида уже жестко предопределено. Всем известно, что из яйца птицы развивается птица, а из яйца лягушки -лягушка. Правда, фенотипы организмов всегда различаются и могут быть нарушены до степени гибели или возникновения порока развития, а нередко могут быть даже как бы искусственно сконструированы, например у химерных животных.

Требуется понять, каким образом клетки, обладающие чаще всего одинаковыми кариотипом и генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному «образу» данного вида организмов. Осторожность при выдвижении положения о том, что наследственный материал всех соматических клеток абсолютно идентичен, отражает объективную реальность и историческую неоднозначность в трактовке причин клеточной дифференцировки.

В. Вейсман выдвинул гипотезу о том, что только линия половых клеток несет в себе и передает потомкам всю информацию своего генома, а соматические клетки могут отличаться от зиготы и друг от друга количеством наследственного материала и поэтому дифференцироваться в разных направлениях. Ниже приведены факты, подтверждающие возможность изменения наследственного материала в соматических клетках, но их надо трактовать как исключения из правил.

Вейсман опирался на данные о том, что в ходе первых делений дробления яиц лошадиной аскариды происходит отбрасывание (элиминация) части хромосом в соматических клетках эмбриона. В дальнейшем было показано, что отбрасываемая ДНК содержит главным образом часто повторяющиеся последовательности, т.е. фактически не несущие информации.

Развитие представлений о механизмах цитодифференцировки изображено на схеме 8.2.

Позже были обнаружены и другие примеры изменения количества наследственного материала в соматических клетках как на геномном, так и на хромосомном и генном уровнях. Описаны случаи элиминации целых хромосом у циклопа, комара и у одного из представителей сумчатых. У последних из соматических клеток самки элиминируется Х-хромосома, а из клеток самца - Y-хромосома. В результате соматические клетки у них содержат только по одной Х-хромосоме, а в линии половых клеток сохраняются нормальные кариотипы: XX или XY.

В политенных хромосомах слюнных желез двукрылых ДНК может синтезироваться несинхронно, например при политенизации гетерохроматиновые участки реплицируются меньшее число раз, чем эухроматиновые. Сам процесс политенизации, напротив, приводит к значительному увеличению количества ДНК в дифференцированных клетках по сравнению с родоначальными клетками.

Такой механизм репликации ДНК, как амплификация, также приводит к многократному увеличению количества некоторых генов в одних клетках по сравнению с другими. В овогенезе многократно увеличивается число рибосомальных генов, могут амплифицироваться и некоторые другие гены. Имеются данные о том, что в некоторых клетках в процессе дифференцировки происходит перестройка генов, например иммуноглобулиновых генов в лимфоцитах.

Однако в настоящее время общепризнанной является точка зрения, ведущая начало от Т. Моргана, который, опираясь на хромосомную теорию наследственности, предположил, что дифференцировка клеток в процессе онтогенеза является результатом последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Таким образом, впервые прозвучала идея о дифферециальной экспрессии генов как основном механизме цитодифференцировки. В настоящее время собрано много доказательств того, что в большинстве случаев соматические клетки организмов несут полный диплоидный набор хромосом, а генетические потенции ядер соматических клеток могут сохраняться, т.е. гены не утрачивают потенциальной функциональной активности.

Сохранение полного хромосомного набора развивающегося организма обеспечивается прежде всего механизмом митоза (возможные случаи соматических мутаций, возникающих, как исключение, во внимание не принимаем). Проведенные цитогенетическим методом исследования кариотипов различных соматических клеток показали почти полную их идентичность. Цитофотометрическим способом установлено, что количество ДНК в них не уменьшается, а методом молекулярной гибридизации показано, что клетки разных тканей идентичны по нуклеотидным последовательностям. На этом основании цитогенетический метод применяют для диагностики хромосомных и геномных болезней человека (хотя ошибки методов достигают 5- 10%), а метод гибридизации ДНК -для идентификации личности и установления степени родства.

Помимо установленной количественной полноценности ДНК большинства соматических клеток большой интерес представляет вопрос о сохранении функциональных свойств содержащегося в них наследственного материала. Все ли гены сохраняют способность к реализации своей информации? О сохранении генетических потенций ядер можно судить по результатам опытов, проведенных над растениями и животными. Прошедшая длительный путь дифференцировки соматическая клетка моркови способна развиваться в полноценный организм (рис. 8.6). У животных отдельные соматические клетки после стадии бластулы, как правило, не способны развиваться в целый нормальный организм, но их ядра, будучи пересажены в цитоплазму овоцита или яйцеклетки, начинают вести себя соответственно той цитоплазме, в которой они оказались.

Опыты по пересадке ядер соматических клеток в яйцеклетку впервые были успешно осуществлены в 50-х гг. в США, а в 60-70-х гг. получили широкую известность опыты английского ученого Дж. Гердона. Используя африканскую шпорцевую лягушку Xenopus laevis, он в небольшом проценте случаев получил развитие взрослой лягушки из энуклеированной яйцеклетки, в которую пересаживал ядро из эпителиальной клетки кожи лягушки или кишечника головастика, т.е. из дифференцированной клетки (см. рис. 5.3). Энуклеацию яйцеклетки проводили большими дозами ультрафиолетового облучения, что приводило к функциональному удалению ее ядра. Для доказательства того, что в развитии зародыша участвует пересаженное ядро соматической клетки, применили генетическое маркирование. Яйцеклетку брали из линии лягушек с двумя ядрышками в ядре (соответственно двум ядрышковым организаторам в двух гомологичных хромосомах), а ядро клетки донора - из линии, имеющей в ядрах только одно ядрышко вследствие гетерозиготности по делении ядрышкового организатора. Все ядра в клетках особи, полученной в результате трансплантации ядра, имели только одно ядрышко.

Вместе с тем опыты Гердона обнаружили многие другие важнейшие закономерности. Во-первых, они еще раз подтвердили предположение Т. Моргана о решающем значении взаимодействия цитоплазмы и ядра в жизнедеятельности клеток и развитии организма. Во-вторых, в многочисленных экспериментах было показано, что чем старше стадия зародыша-донора, из клеток которого брали ядро для пересадки, тем в меньшем проценте случаев развитие оказывалось полностью завершенным, т.е. достигало стадий головастика, а затем лягушки.

Рис. 8.6. Опыт, показывающий сохранение функциональных свойств наследственного материала в соматической дифференцированной клетке моркови:

1 -срез корня в питательной среде, 2- профилирующие клетки в культуре, 3- клетка, изолированная из культуры, 4- ранний зародыш, 5- более поздний зародыш, 6- молодое растение, 7-взрослое растение

В большинстве случаев развитие останавливалось на более ранних стадиях. Зависимость результатов пересадки от стадии зародыша-донора ядер представлена на рис. 8.7. Анализ зародышей, останавливающихся в развитии после пересадки ядра, показал множество хромосомных аномалий в их ядрах. Другой причиной остановки развития считают неспособность ядер дифференцированных клеток к восстановлению синхронной репликации ДНК.

Главный вывод, который вытекает из этого опыта, заключается в том, что наследственный материал соматических клеток способен сохраняться полноценным не только в количественном, но и в функциональном отношении, цитодифференцировка не является следствием недостаточности наследственного материала.

Самым последним достижением в этой области является получение овечки Долли. Ученые не исключают возможности воспроизведения подобным же образом, т.е. путем пересадки ядер, генетических двойников человека. Следует однако отдавать себе отчет, что клонирование человека кроме научно-технологического имеет также этический и психологический аспекты.

Гипотеза дифференциальной экспрессии генов в признак принимается в настоящее время в качестве основного механизма цитодифференцировки.

Общие принципы регуляции экспресии генов изложены в гл. 3.6.6. В данной главе делается попытка выяснить механизмы регуляции избирательной проявляемости генов в признак применительно к развивающемуся многоклеточному организму, у которого судьбы отдельных групп клеток неотрывны от пространственно-временных аспектов индивидуального развития. Уровни регуляции дифференциальной экспрессии генов соответствуют этапам реализации информации в направлении ген → полипептид → признак и включают не только внутриклеточные процессы, но тканевые и организменные.

Экспрессия гена в признак - это сложный этапный процесс, который можно изучать разными методами: электронной и световой микроскопией, биохимически и другими. На схеме 8.3 приведены основные этапы экспрессии генов и методы, с помощью которых их можно изучать.

Схема 8.3

Визуальное наблюдение в электронный микроскоп, как наиболее прямой подход к изучению уровня транскрипции, т.е. генной активности, проведено в отношении только отдельных генов - рибосомных, генов хромосом типа ламповых щеток и некоторых других (см. рис. 3.66). На элекгронограммах отчетливо видно, что одни гены транскрибируются активнее других. Хорошо различимы и неактивные гены.

Особое место занимает изучение политенных хромосом. Политенные хромосомы - это гигантские хромосомы, обнаруживаемые в интерфазных клетках некоторых тканей у мух и других двукрылых. Такие хромосомы есть у них в клетках слюнных желез, мальпигиевых сосудов и средней кишки. Они содержат сотни нитей ДНК, которые редуплицировались, но не подверглись расхождению. При окраске в них выявляются четко выраженные поперечные полосы или диски (см. рис. 3.56). Многие отдельные полосы соответствуют местоположению отдельных генов. Ограниченное число определенных полос в некоторых дифференцированных клетках образует вздутия, или пуфы, выступающие за пределы хромосомы. Эти вздутые участки находятся там, где гены наиболее активны в отношении транскрипции. Было показано, что клетки разного типа содержат разные пуфы (см. рис. 3.65). Изменения в клетках, происходящие в ходе развития, коррелируют с изменениями в характере пуфов и синтезом определенного белка. Других примеров визуального наблюдения генной активности пока нет.

Все остальные этапы экспрессии генов являются результатом сложных видоизменений продуктов первичной генной активности. Под сложными изменениями подразумевают посттранскрипционные преобразования РНК, трансляцию и посттрансляционные процессы.

Имеются данные по изучению количества и качества РНК в ядре и цитоплазме клеток организмов, находящихся на разных стадиях эмбрионального развития, а также в клетках различных типов у взрослых особей. Обнаружено, что сложность и число различных видов ядерной РНК в 5-10 раз выше, чем мРНК. Ядерные РНК, которые представляют собой первичные продукты транскрипции, всегда длиннее, чем мРНК. Кроме того, ядерная РНК, изученная на морском еже, по количеству и качественному разнообразию идентична на различных стадиях развития особи, а мРНК цитоплазмы отличается.в клетках разных тканей. Это наблюдение приводит к мысли о том, что посттранскрипционные механизмы влияют на дифференциальную экспрессию генов.

Примеры посттранскрипционной регуляции экспрессии генов на уровне процессинга известны. Мембранно-связанная форма иммуноглобулина IgM у мышей отличается от растворимой формы дополнительной аминокислотной последовательностью, позволяющей мембранно-связанной форме «заякориваться» в клеточной мембране. Оба белка кодируются одним локусом, но процессинг первичного транскрипта протекает по-разному. Пептидный гормон кальцитонин у крыс представлен двумя разными белками, детерминированными одним геном. У них одинаковые первые 78 аминокислот (при общей длине 128 аминокислот), а различия обусловлены процессингом, т.е. опять наблюдается дифференциальная экспрессия одного и того же гена в различных тканях. Есть и другие примеры. Вероятно, альтернативный процессинг первичных транскриптов играет очень важную роль в дифференцировке, однако остается неясным его механизм.

Большая часть мРНК цитоплазмы одинакова по качественному составу в клетках, относящихся к различным стадиям онтогенеза. мРНК необходимы для обеспечения жизнедеятельности клеток и детерминируются генами «домашнего хозяйства», представленными в геноме в виде нескольких нуклеотидных последовательностей со средней частотой повторяемости. Продуктами их активности являются белки, необходимые для сборки клеточных мембран, различных субклеточных структур и т.д. Количество этих мРНК составляет примерно 9/10 от всех мРНК цитоплазмы. Остальные мРНК являются необходимыми для определенных стадий развития, а также различных типов клеток.

При изучении разнообразия мРНК в почках, печени и головном мозге мышей, в яйцеводах и печени кур было обнаружено около 12000 различных мРНК. Лишь 10-15% были специфичны для какой-либо одной ткани. Они считываются с уникальных нуклеотидных последовательностей тех структурных генов, действие которых специфично в данном месте и в данный момент и которые называются генами «роскоши». Количество их соответствует примерно 1000-2000 генов, ответственных за дифференцировку клеток.

Не все гены, имеющиеся в клетке, вообще реализуются до этапа образования мРНК цитоплазмы, но и эти образовавшиеся мРНК не все и не во всяких условиях реализуются в полипептиды и тем более в сложные признаки. Известно, что некоторые мРНК блокируются на уровне трансляции, будучи в составе рибонуклеопротеиновых частиц - информосом, вследствие чего происходит задержка трансляции. Это имеет место в овогенезе, в клетках хрусталика глаза.

В ряде случаев окончательная дифференцировка связана с «достройкой» молекул ферментов или гормонов или четвертичной структуры белка. Это уже посттрансляционные события. Например, фермент тирозиназа появляется у зародышей амфибий еще в раннем эмбриогенезе, но переходит в активную форму лишь после их вылупления.

Другим примером является дифференцировка клеток, при которой они приобретают способность реагировать на определенные вещества не сразу после синтеза соответствующего рецептора, а только в определенный момент. Показано, что мышечные волокна в своей мембране имеют рецепторы к медиаторному веществу ацетилхолину. Интересно, однако, что эти холинорецепторы обнаруживали внутри цитоплазмы клеток-миобластов до образования ими мышечных волокон, а чувствительность к ацетилхолину возникала только с момента встраивания рецепторов в плазматическую мембрану во время образования мышечных трубочек и мышечных волокон. Этот пример показывает, что экспрессия генов и тканевая дифференцировка могут регулироваться после трансляции в процессе межклеточных взаимодействий.

Таким образом, дифференцировка клеток не сводится только к синтезу специфических белков, поэтому применительно к многоклеточному организму эта проблема неотрывна от пространственно-временных аспектов и, следовательно, от еще более высоких уровней ее регуляции, нежели уровни регуляций биосинтеза белка на клеточном уровне. Дифференцировка всегда затрагивает группу клеток и соответствует задачам обеспечения целостности многоклеточного организма.

Морфогенез Морфогенез - это процесс возникновения новых структур и изменения их формы в ходе индивидуального развития организмов. Морфогенез, как рост и клеточная дифференцировка, относится к ациклическим процессам, т.е. не возвращающимся в прежнее состояние и по большей части необратимым. Главным свойством ациклических процессов является их пространственно-временная организация. Морфогенез на надклеточном уровне начинается с гаструляции. У хордовых животных после гаструляции происходит закладка осевых органов. В этот период, как и во время гаструляции, морфологические перестройки охватывают весь зародыш. Следующие затем органогенезы представляют собой местные процессы. Внутри каждого их них происходит расчленение на новые дискретные (отдельные) зачатки. Так последовательно во времени и в пространстве протекает индивидуальное развитие, приводящее к формированию особи со сложным строением и значительно более богатой информацией, нежели генетическая информация зиготы. Морфогенез связан с очень многими процессами, начиная с прогенеза. Поляризация яйцеклетки, овоплазматическая сегрегация после оплодотворения, закономерно ориентированные деления дробления, движения клеточных масс в ходе гаструляции и закладок различных органов, изменения пропорций тела - все это процессы, имеющие большое значение для морфогенеза. Помимо надклеточного уровня к морфопроцессам относятся такие процессы, которые протекают на субклеточном и молекулярном уровнях. Это изменения формы и строения отдельных клеток, распад и воссоздание молекул и крупных молекулярных комплексов, изменение конформации молекул. Таким образом, морфогенез представляет собой многоуровневый динамический процесс. В настоящее время уже многое известно о тех структурных превращениях, которые происходят на внутриклеточном и межклеточном уровнях и которые преобразуют химическую энергию клеток в механическую, т.е. об элементарных движущих силах морфогенеза. В расшифровке всех этих внутриуровневых и межуровневых процессов большую роль сыгралкаузально-аналитический (от лат. causa - причина) подход. Данный отрезок развития считают объясненным, если его удалось представить в виде однозначной последовательности причин и следствий. В этом аспекте одним из первостепенных является вопрос о том, содержится ли в геноме данного вида или в генотипе зиготы информация о конкретных морфологических процессах. Очевидно, что в геноме данного вида заложена информация о конечном результате, т.е. развитии особи определенного вида. Очевидно также, что в генотипе зиготы содержатся определенные аллели родителей, обладающие возможностью реализоваться в определенные признаки. Но из каких именно клеток, в каком месте и в какой конкретно форме разовьется тот или иной орган, в генотипе не заложен о. Это утверждение вытекает из всех сведений о явлениях эмбриональной регуляции, которые показывают, что конкретные пути морфогенеза как в эксперименте, так и в нормальном развитии могут варьировать. Гены, лишенные однозначного морфогенетического смысла, приобретают его, однако, в системе целостного развивающегося организма ив контексте определенных, структурно устойчивых схем морфогенеза. Клетки и клеточные комплексы совершают закономерные спонтанные, не порождаемые внешними силами, макроскопические морфогенетические движения. При изменении положения, уменьшении или увеличении количества бластомеров и при пересадке эмбриональных индукторов в нетипичное место нередко достигается нормальный результат. Это позволяет рассматривать морфогенез как самоорганизующийся процесс образования структур из исходно однородного состояния, что является неотъемлемым свойством самоорганизующихся систем, обладающих свойством целостности. Одновременно с взаимосвязью всех частей развивающегося эмбриона возникают относительно автономизированные биологические системы, способные продолжать развитие в условиях изоляции от целого организма. Если зачаток бедра куриного зародыша культивировать в искусственной среде, он продолжает развиваться в прежнем направлении. Глаз крысы, изолированный на стадии 14-17 сут, продолжает автоматически развиваться, хотя дефектно и медленнее. Через 21 сут глаз в культуре тканей приобретает ту степень сложности структуры, которую нормально он уже имеет на 8-е сутки после рождения крысы. Для объяснения всех этих явлений каузально-аналитический подход неприменим. На вооружение взята физико-математическая теория самоорганизации неравновесных природных систем, как биологических, так и небиологических. В настоящее время разрабатывают несколько подходов к проблеме регуляции и контроля морфогенеза. Концепция физиологических градиентов, предложенная в начале XX в. американским ученым Ч. Чайльдом, заключается в том, что у многих животных обнаруживаются градиенты интенсивности обмена веществ и совпадающие с ними градиенты повреждаемости тканей. Эти градиенты обычно снижаются от переднего полюса животного к заднему. Они определяют пространственное расположение морфогенеза и цитодифференцировки. Возникновение самих градиентов определяется гетерогенностью внешней среды, например питательных веществ, концентрации кислорода или силы тяжести. Любое из условий или их совокупность могут вызвать первичный физиологический градиент в яйцеклетке. Затем возможно возникновение вторичного градиента под некоторым углом к первому. Система из двух градиентов (или более) создает определенную координатную систему. Функцией координаты является судьба клетки. Ч. Чайльд открыл также, что верхний конец градиента является доминирующим. Выделяя некоторые факторы, он подавлял развитие таких же структур из других клеток зародыша. Наряду с подтверждающими имеются явления, которые не укладываются в упрощенную схему, и поэтому концепцию Чайльда нельзя рассматривать как универсальное объяснение пространственной организации развития. Более современной является концепция позиционной информации, по которой клетка как бы оценивает свое местоположение в координатной системе зачатка органа, а затем дифференцируется в соответствии с этим положением. По мнению современного английского биолога Л. Вольперта, положение клетки определяется концентрацией некоторых веществ, расположенных вдоль оси зародыша по определенному градиенту. Ответ клетки на свое местоположение зависит от генома и всей предыдущей истории ее развития. По мнению других исследователей, позиционная информация есть функция полярных координат клетки. Существует также мнение о том, что градиенты представляют собой стойкие следы периодических процессов, распространяющихся вдоль развивающегося зачатка. Концепция позиционной информации позволяет формально интерпретировать некоторые закономерности онтогенетического развития, но она очень далека от общей теории целостности. Концепция морфогенетических полей, базирующаяся на предположении о дистантных либо контактных взаимодействиях между клетками зародыша, рассматривает эмбриональное формообразование как самоорганизующийся и самоконтролируемый процесс. Предыдущая форма зачатка определяет характерные черты его последующей формы. Кроме того, форма и структура зачатка способны оказать обратное действие на биохимические процессы в его клетках. Наиболее последовательно эту концепцию разрабатывал в 20-30-х гг. отечественный биолог А. Г. Гурвич, предложивший впервые в мировой литературе математические модели формообразования. Он, например, моделировал переход эмбрионального головного мозга из стадии одного пузыря в стадию трех пузырей. Модель исходила из гипотезы об отталкивающих взаимодействиях между противоположными стенками зачатка. На рис. 8.17 эти взаимодействия отображены тремя векторами (А, А 1 , А 2). Гурвич впервые указал также на важную роль неравновесных надмолекулярных структур, характер и функционирование которых определяются приложенными к ним векторами поля. В последние годы К. Уоддингтон создал более обобщенную концепцию морфогенетического векторного поля, включающую не только формообразование, но и любые изменения развивающихся систем. Близкие идеи лежат в основе концепции диссипативных структур. Диссипативными (от лат. dissipatio - рассеяние) называют энергетически открытые, термодинамически неравновесные биологические и небиологические системы, в которых часть энергии, поступающей в них извне, рассеивается. В настоящее время показано, что в сильно неравновесных условиях, т.е. при достаточно сильных потоках вещества и энергии, системы могут самопроизвольно и устойчиво развиваться, дифференцироваться. В таких условиях возможны и обязательны нарушения однозначных причинно-следственных связей и проявления эмбриональной регуляции и других явлений. Примерами диссипативных небиологических систем являются химическая реакция Белоусова - Жаботинского, а также математическая модель абстрактного физико-химического процесса, предложенная английским математиком А. Тьюрингом. На пути моделирования морфогенеза как самоорганизующегося процесса сделаны первые шаги, а все перечисленные концепции целостности развития носят пока фрагментарный характер, освещая то одну, то другую сторону.

Апоптоз - программируемая клеточная смерть, регулируемый процесс самоликвидации на клеточном уровне, в результате которого клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Фрагменты погибшей клетки обычно очень быстро (в среднем за 90 минут) фагоцитируются (захватываются и перевариваются) макрофагами либо соседними клетками, минуя развитие воспалительной реакции. Принципиально апоптоз у многоклеточных эукариот сходен с программируемой клеточной гибелью у одноклеточных эукариот. На протяжении всего эволюционного процесса прослеживается общность основных функций апоптоза, сводящихся к удалению дефектных клеток и участию в процессах дифференцировки и морфогенеза. В различных литературных и электронных источниках постулируется эволюционная консервативность генетического механизма апоптоза. В частности, подобные выводы делаются на основании выявленной генетической и функциональной гомологии процессов апоптоза у нематод Caenorhabditis elegans и млекопитающих, или же у растений и животных.

Подробное рассмотрение апоптоза, характерного для многоклеточных эукариот приводится ниже. Однако следует привести оговорку. В связи с тем, что преобладающее большинство исследований морфологии и молекулярных механизмов апоптоза проводится на животных, а также на основании общности функций и консервативности механизмов апоптоза, нижеследующее детальное описание ведётся преимущественно на примере апоптоза млекопитающих.

Дифференцировка - это обретение клеткой отличительных черт, позволяющих ей исполнять определённые предназначенные ей функции в многоклеточном организме.

Клеточную дифференцировку можно хорошо разобрать на примере кроветворения (гемопоэза), процесс которого происходит в красном костном мозге.

Согласно современным представлениям родоначальницей всех клеток крови является полипотентная стволовая клетка (Рис.1, I). Ее дифференциация в различных направлениях осуществляется в несколько этапов, для каждого из которых характерен определенный класс клеток.

На раннем этапе дифференцировки образуются две так называемые комитированные клетки , одна из которых является предшественницей лимфо- и плазмоцитопоэза, а другая - всех миелоидных элементов, т. е. моноцитарного, гранулоцитарного, эритроцитарного и тромбоцитарного ростков. При этом созревание моноцитов, нейтрофилов, эритроцитов и тромбоцитов осуществляется в костном мозге, а клеток лимфоидного ростка и плазмоцитопоэз - в лимфоидных органах (лимфоузлы, селезенка). В результате дальнейшей дифференцировки клеток предшественников кроветворения образуются бластные клетки: монобласты, миелобласты (барофильный нейтрофильный, эозинофильный), эритробласты, мегокариобласты, Т- и В- лимфобласты, Т- иммунобласты В-иммунобласты (плазмобласты) (см. Рис 1, IV).

Видео: Дифференцировка клеток

Видео: Клеточная дифференцировка и стволовые клетки

Общее название для всех клеток, ещё не достигших окончательного уровня специализации (то есть способных дифференцироваться), - стволовые клетки. Степень дифференцированности клетки (её «потенция к развитию») называется потентностью. Клетки, способные дифференцироваться в любую клетку взрослого организма, называют плюрипотентными. Плюрипотентными являются, например, клетки внутренней клеточной массы бластоцисты млекопитающих. Для обозначения культивируемых in vitro плюрипотентных клеток, получаемых из внутренней клеточной массы бластоцисты, используется термин «эмбриональные стволовые клетки».

Дифференцировка - это процесс, в результате которого клетка становится специализированной, т.е. приобретает химические, морфологические и функциональные особенности. В самом узком смысле это изменения, происходящие в клетке на протяжении одного, нередко терминального, клеточного цикла, когда начинается синтез главных, специфических для данного клеточного типа, функциональных белков. Примером может служить Дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем последовательно в другие, более поверхностные слои, происходит накопление кератогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое - в кератин. При этом изменяются форма клеток, строение клеточных мембран и набор органоидов. На самом деле дифференцируется не одна клетка, а группа сходных клеток. Примеров можно привести множество, так как в организме человека насчитывают порядка 220 различных типов клеток. Фибробласты синтезируют коллаген, миобласты - миозин, клетки эпителия пищеварительного тракта - пепсин и трипсин. 338

В более широком смысле под дифференцировкой понимают постепенное (на протяжении нескольких клеточных циклов) возникновение все больших различий и направлений специализации между клетками, происшедшими из более или менее однородных клеток одного исходного зачатка. Этот процесс непременно сопровождают морфогенетические преобразования, т.е. возникновение и дальнейшее развитие зачатков определенных органов в дефинитивные органы. Первые химические и морфогенетические различия между клетками, обусловливаемые самим ходом эмбриогенеза, обнаруживаются в период гаструляции.



Зародышевые листки и их производные являются примером ранней дифференцировки, приводящей к ограничению потенций клеток зародыша.

ЯДЕРНО_ ЦИТОПЛАЗМАТИЧЕСКИЕ ОТНОШЕНИЯ

Можно выделить целый ряд признаков, которые характеризуют степень дифференцированности клеток. Так, для недифференцированного состояния характерны относительно крупное ядро и высокое ядерно-цитоплазматическое отношение V ядра /V цитоплазмы (V- объем), диспергированный хроматин и хорошо выраженное ядрышко, многочисленные рибосомы и интенсивный синтез РНК, высокая митотическая активность и неспецифический метаболизм. Все эти признаки изменяются в процессе дифференцировки, характеризуя приобретение клеткой специализации.

Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называют гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития.

В то же время удивительно, что, в сущности, с момента одноклеточной стадии (зиготы) развитие из нее организма определенного вида уже жестко предопределено. Всем известно, что из яйца птицы развивается птица, а из яйца лягушки -лягушка. Правда, фенотипы организмов всегда различаются и могут быть нарушены до степени гибели или возникновения порока развития, а нередко могут быть даже как бы искусственно сконструированы, например у химерных животных.

Требуется понять, каким образом клетки, обладающие чаще всего одинаковыми кариотипом и генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному «образу» данного вида организмов. Осторожность при выдвижении положения о том, что наследственный материал всех соматических клеток абсолютно идентичен, отражает объективную реальность и историческую неоднозначность в трактовке причин клеточной дифференцировки.

В. Вейсман выдвинул гипотезу о том, что только линия половых клеток несет в себе и передает потомкам всю информацию своего генома, а соматические клетки могут отличаться от зиготы и друг от друга количеством наследственного материала и поэтому дифференцироваться в разных направлениях. Ниже приведены факты, подтверждающие возможность изменения наследственного материала в соматических клетках, но их надо трактовать как исключения из правил.

Похожие статьи