Влияние радиоактивных излучений на растения. Действие ионизирующего излучение на сельскохозяйственные растения

Министерство образования и науки Республики Казахстан

Павлодарский государственный университет

Им. С. Торайгырова

А.П.Бондаренко

Основы радиационной экологии

Учебно-методическое пособие для студентов естественных специальностей

Павлодар

Рецензент:

К.п.н., доцент Хамзина Ш.Ш.

Б81 Бондаренко А.П.

Основы радиационной экологии: учебно-методическое пособие. - Павлодар, 2007. - 100 с. - Ч. 2.

В данном пособии первой из них мы обозначили проблему, описанооописано взаимодействие ионизирующего излучения с веществом, действие радиации на живые организмы, миграция радионуклидов по элементам биосфера и радиационный мониторинг. Приведены основы радиационной безопасности. Дана методика расчета допустимых уровней облучения

УДК 504.05(075.8)

ÓБондаренко А.П. 2007

ÓПавлодарский государственный университет им С. Торайгырова, 2007

Введение

Экологическая обстановка практически во всех регионах земного шара остается неудовлетворительной. Высокая техногенная нагрузка на природные ресурсы ухудшает состояние окружающей среды и снижает плодородие почв. Выбросы радиоактивных элементов в окружающую среду существенно изменили радиационную обстановку в биосфере, что оказало огромное влияние на все экологические взаимоотношения.

Радиационный фон - постоянно действующий экологический фактор, который играл важную роль в формировании и эволюции живого вещества и оказывает постоянное влияние на биоту. Ес­тест­венная ионизация обусловлена космическим излучением и радионуклидами, со­держащимися в земной коре, воде и воздухе. В результате ядерных взрывов, особенно в атмосфере, важной составляющей радиационного воздействия на биосферу, стало антропогенное загрязнение окру­жающей среды, обусловленное интенсивным выбросом расщепляющихся ма­териалов, в том числе и долгоживущих, многие из которых активно вовлекаются в биогенный круговорот веществ. Несмотря на существенное снижение техногенных выбросов радиоактивных элементов в окружающую среду за последние десятилетия - эта проблема будет иметь значение еще длительное время, из-за глобального загрязнения поверхности Земли и продолжительного периода полураспада некоторых радионуклидов.

Облучение человека и животных радионуклидами, поступившими в среду обитания, складываются из внешнего облучения радионуклидами, осевшими на почвенно-растительный покров земной поверхности, облучения радионуклидами, поступающими в организм через органы дыхания, а также облучения поступившими внутрь организма через пищеварительный тракт с пищей и водой. Последний из перечисленных способов облучения является доминирующим в настоящее время на территориях, содержащих повышенные уровни радиоактивных элементов.

Радиационное воздействие техногенного происхождения изменяется со временем и вопрос его последействия на живые системы требует изучения, как из-за отсутствия полной картины влияния хронического облучения на отдельный организм низкими и сверхнизкими дозами ионизирующего излучения, так и из-за слабой изученности системных изменений в биосфере при длительном влиянии измененных и новых экологических факторов.

Цель данного пособия – дать представление о радиационных явлениях, естественных и искусственных источниках ионизирующего излучения показать их распространение в природных объектах и живых организмах и их роль в действии на здоровье человека и других видов, а также дать понятие о радиационном экологическом мониторинге и радиационной безопасности.

^ 1 Ионизирующее действие радиационных излучений

В первой части пособия мы рассмотрели явление ионизации, как способность некоторых частиц, обладающих достаточно большой энергией, выбивать электроны с внешних оболочек атомов. Ионизирующее излучение (ИИ) - это потоки частиц и квантов электромагнитной энергии, прохождение которых через вещество приводит к возбуждению его атомов, и к ионизации вещества. Ионизацияэлектрически нейтральных атомов и молекулобуславливает образование положительных и отрицательных ионов и свободных электронов.

^ 1.1 Ионизация в газе и жидкости

Для разделения нейтрального невозбуждённого атома (молекулы) на две или более заряженные частицы, т. е. для его ионизации, необходимо затратить некоторую энергию, которую называют энергией ионизации. Для всех атомов данного элемента (или молекул данного химического соединения), ионизирующихся из основного состояния одинаковым образом (с образованием одинаковых ионов), энергия ионизации одинакова. Простейший акт ионизации - отщепление от атома (молекулы) одного электрона и образование положительного иона – рисунок 1.

На рисунке 1 показано, что электрон выбивается энергией γ –кванта, который должен обладать значительной энергией, чтобы не просто перевести электрон на более высокую энергетическую орбиту, а удалить его за пределы сил притяжения ядра. Энергию ионизации в объект облучения могут переносить не только γ –кванты, но и электроны, мезоны, протоны, нейтроны, другие частицы и их античастицы.

Присоединение электронов к нейтральным атомам или молекулам (образование отрицательного иона), в отличие от других актов ионизации, может сопровождаться как затратой, так и выделением энергии; в последнем случае говорят, что атомы (молекулы) данного вещества обладают сродством к электрону.

Если энергия ионизации сообщается ионизуемой частице другой частицей (электроном, атомом или ионом) при их столкновении, то ионизацию называется ударной. Вероятность ударной ионизации (характеризуемая эффективным поперечным сечением ионизации) зависит от рода ионизуемых и бомбардирующих частиц и от их кинетической энергии. До некоторого минимального (порогового) значения кинетической энергии эта вероятность равна нулю, при ее увеличении выше порога она вначале быстро возрастает, достигает максимума, а затем убывает.

Если энергии, передаваемые ионизуемым частицам в столкновениях, достаточно велики, возможно образование из них, наряду с однозарядными, и многозарядных ионов (многократная ионизации). При столкновениях атомов и ионов с атомами может происходить ионизация не только бомбардируемых, но и бомбардирующих частиц.

Ионизация может вызываться не только частицами, налетающими извне. Когда энергия теплового движения атомов (молекул) вещества достаточно велика, они могут ионизовать друг друга при взаимных столкновениях - происходит термическая ионизация. Значительной интенсивности она достигает при температурах ~10 3 - 10 4 K, например, в дуговом разряде, ударных волнах, в звёздных атмосферах.

Процессы, в которых ионизуемые частицы получают энергию ионизации от фотонов (квантов электромагнитного излучения), называют фотоионизацией. Если атом (молекула) невозбуждён, то энергия ионизующего фотона h (h - постоянная Планка,  - частота излучения), должна быть не меньше энергии ионизации. Для всех атомов и молекул в газах и жидкостях эта величина энергии такова, что ей удовлетворяют лишь ультрафиолетовые и более жёсткие фотоны. Однако фотоионизацию наблюдают и при h
Объясняется это тем, что она может иметь характер ступенчатой ионизации: вначале поглощение одного фотона возбуждает частицу, после чего взаимодействие со следующим фотоном приводит к ионизации. В отличие от ударной ионизации, вероятность фотоионизации максимальна именно при пороговой энергии фотона h
Ионизованные газы и жидкости обладают электропроводностью, что, с одной стороны, лежит в основе разнообразных применений процессов ионизации, а с другой стороны, даёт возможность измерять степень ионизации этих сред, т. е. отношение концентрации заряженных частиц в них к исходной концентрации нейтральных частиц.

Процессом, обратным ионизации, является рекомбинация ионов и электронов - образование из них нейтральных атомов и молекул. Защищенный от внешних воздействий газ при обычных температурах в результате рекомбинации очень быстро переходит в состояние, в котором степень его ионизации пренебрежимо мала. Поэтому поддержание заметной ионизации в газе возможно лишь при действии внешнего ионизатора (потоки частиц, фотонов, нагревание до высокой температуры). При определённой концентрации заряженных частиц ионизованный газ превращается в плазму, резко отличающуюся по своим свойствам от газа нейтральных частиц.

Особенность ионизации жидких растворов состоит в том, что в них молекулы растворённого вещества распадаются на ионы уже в самом процессе растворения без всякого внешнего ионизатора, за счёт взаимодействия с молекулами растворителя. Взаимодействие между молекулами приводит к самопроизвольной ионизации и в некоторых чистых жидкостях (вода, спирты, кислоты).

^ 1.2 Ионизация в твёрдом теле

Процесс превращения атомов твёрдого тела в заряженные ионы, связанный с переходом электронов из валентной зоны кристалла в зону проводимости (в случае примесных атомов - с потерей или захватом ими электронов). Ионизация происходит также, если через вещество проходит поток заряженных (электроны, протоны) или нейтральных (нейтроны) частиц. При этом нужно учитывать, что изменения в веществе вызывает только поглощенная энергия. Доза ионизирующего излучения - энергия ионизирующего излучения, поглощённая в единице массы облучаемого вещества. В системе СИ поглощенная энергия измеряется в Греях (Гр) – 1 Гр – это такая энергия радиационного воздействия, при котором в одном килограмме вещества запасается 1 Дж энергии. Часто используют несистемную единицу – рад, 1 Гр = 100 рад.

1 Гр=
.

Живой объект можно рассматривать как совокупность трех фаз: жидкой, твердой и газообразной, поэтому при действии факторов ионизирующего излучения необходимо учитывать особенности ионизации в этих средах, с учетом эффективности поглощения и преобразования энергии.

^ 2 Действие ионизирующих излучений на живые объекты

Биологическое действие ионизирующих излучений - изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма-излучения) или потоков заряженных частиц (альфа-частиц, бета - излучения, протонов) и нейтронов.

Исследования влияния ионизирующих излучений на биологические объекты были начаты сразу после открытия рентгеновского излучения (1895) и радиоактивности (1896). В 1896 физиолог И. Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Особенно интенсивно стали развиваться исследования биологического действия ионизирующих излучений с началом применения атомного оружия (1945), а затем и мирного использования атомной энергии.

Первичное действие радиации произвольного вида на любой биологический объект начинается с поглощения энергии излучения, что сопровождается возбуждением молекул и их ионизацией. Ионизация органических молекул обуславливает возникновение свободных радикалов, которые, включаясь в протекающие в организме химические реакции, нарушают течение обмена веществ и, вызывая появление несвойственных организму соединений, расстраивают процессы жизнедеятельности в этом проявляется прямое действие излучения.

При ионизации молекул воды в живом организме, состоящем до 90% из воды, в присутствии кислорода возникают активные радикалы (ОН- и др.), гидратированные электроны, а также молекулы перекиси водорода, включающиеся затем в цепь химических реакций в клетке, что обеспечивает косвенное действие излучения.

При облучении в дозе 1000 Р (что соответствует поглощенной дозе порядка 10 Гр) в клетке средней величины (10 -9 г) возникает около 1 млн. таких радикалов, каждый из которых в присутствии кислорода воздуха может дать начало цепным реакциям окисления, во много раз увеличивающим количество измененных молекул в клетке и вызывающим дальнейшее изменение надмолекулярных (субмикроскопических) структур. Выяснение большой роли свободного кислорода в цепных реакциях, ведущих к лучевому поражению, т.н. кислородного эффекта, способствовало разработке ряда эффективных радиозащитных веществ, вызывающих искусственную гипоксию в тканях организма.

Большую роль играет миграция энергии по молекулам биополимеров, в результате которой поглощение энергии, происшедшее в любом месте макромолекулы, приводит к нарушению её активного центра (например, к инактивации белка-фермента). Физические и физико-химические процессы, лежащие в основе биологического действия ионизирующего излучения, т. е. поглощение энергии и ионизация молекул, занимают доли секунд – рисунок 2.

Биохимические повреждения, в зависимости от места действия, могут оказать влияние на организм, получивший дозу, вызывая соматические эффекты, среди которых лейкоз, рак, уменьшение продолжительности жизни и другие, или на регенеративные органы, в этом случае возможна передача генетических повреждений (мутаций) отдаленным потомкам.

Для действия ионизирующих излучений на биологические объекты характерен ряд общих закономерностей:

1) глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии. Так, энергия, поглощённая телом млекопитающего животного или человека при облучении смертельной дозой, при превращении в тепловую привела бы к нагреву тела всего на 0,001°С. Попытка объяснить «несоответствие» количества энергии результатам воздействия привела к созданию теории мишени, согласно которой лучевое


Рисунок 2 - Схема развития лучевого повреждения (в центре) и способы воздействия на него (справа) (Кузин А.М.)

повреждение развивается при попадании энергии в особенно радиочувствительную часть клетки - «мишень»;

2) действие ионизирующего излучения на биологические объекты не ограничивается организмом, подвергнутым облучению, но может распространяться и на последующие поколения, что объясняется влиянием на наследственный аппарат организма. Именно эта особенность очень остро ставит вопросы изучения биологического действия ионизирующих излучений, защиты организма от излучений и ограничения распространения ядерных воздействий на биосферу;

3) для действия ионизирующих излучений на биологические объекты характерен скрытый (латентный) период. Развитие лучевого поражения наблюдается не сразу и зависит от вида ионизирующего излучении, состояния организма и ряда других факторов. Продолжительность латентного периода может варьировать от нескольких мин до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции. Так, при

Облучении в очень больших дозах (тысячи Гр) можно вызвать «смерть под лучом», длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения.

Радиочувствительность разных видов организмов различна. Смерть половины облученных животных (при общем облучении) в течение 30 сут после облучения (летальная доза - LD 50 / 30) вызывается следующими дозами рентгеновского излучения: морские свинки 250 р, собаки 335 р, обезьяны 600 р, мыши 550-650 р, караси (при 18°С) 1800 р, змеи 8000-20000 р. Более устойчивы одноклеточные организмы: дрожжи погибают при дозе 30000 р, амёбы - 100000 р, а инфузории выдерживают облучение в дозе 300000 р. Радиочувствительность высших растений тоже различна: семена лилии полностью теряют всхожесть при дозе облучения 2000 р, на семена капусты не влияет доза в 64000 р.

Большое значение имеют также возраст, физиологическое состояние, интенсивность обменных процессов организма, а также условия облучения. При этом, помимо дозы облучения организма, играют роль: мощность, ритм и характер облучения (однократное, многократное, прерывистое, хроническое, внешнее, общее или частичное, внутреннее), его физические особенности, определяющие глубину проникновения энергии в организм (рентгеновское и гамма-излучение проникает на большую глубину, альфа-частицы до 40 мкм, бета-частицы - на несколько мм), плотность вызываемой излучением ионизации (под влиянием альфа-частиц она больше, чем при действии других видов излучения).

Все эти особенности воздействующего лучевого фактора определяют относительную биологическую эффективность излучения. Если источником излучения служат попавшие в организм радиоактивные изотопы, то огромное значение для ионизирующего действия, испускаемого этими изотопами, имеет их химическая характеристика, определяющая участие изотопа в обмене веществ, концентрацию в том или ином органе, а, следовательно, и характер облучения организма.

Последующие биохимические процессы лучевого повреждения развиваются медленнее. Образовавшиеся активные радикалы нарушают нормальные ферментативные процессы в клетке, что ведёт к уменьшению макроэргических (богатых энергией) соединений. Особенно чувствителен к облучению синтез дезоксирибонуклеиновых кислот (ДНК) в интенсивно делящихся клетках. Таким образом, в результате цепных реакций, возникающих при поглощении энергии излучения, изменяются многие компоненты клетки, в том числе макромолекулы (ДНК, ферменты и др.) и сравнительно малые молекулы (аденозинтрифосфорная кислота, коферменты и др.). Это приводит к нарушению ферментативных реакций, физиологических процессов и клеточных структур.

Воздействие ионизирующего излучения вызывает повреждение клеток. Наиболее важно нарушение клеточного деления. При облучении в сравнительно малых дозах наблюдается временная остановка митоза. Большие дозы могут вызвать полное прекращение деления или гибель клеток. Нарушение нормального хода митоза сопровождается хромосомными перестройками, возникновением мутаций, ведущими к сдвигам в генетическом аппарате клетки, а следовательно, к изменению последующих клеточных поколений (цитогенетический эффект).

При облучении половых клеток многоклеточных организмов нарушение генетического аппарата ведёт к изменению наследственных свойств развивающихся из них организмов. При облучении в больших дозах происходит набухание и пикноз ядра (уплотнение хроматина), затем структура ядра исчезает. В цитоплазме при облучении в дозах 10 000 - 20 000 р (величина порядка 100-200 Гр) наблюдаются изменение вязкости, набухание протоплазматических структур, образование вакуолей, повышение проницаемости. Всё это резко нарушает жизнедеятельность клетки.

Сравнительное изучение чувствительности ядра и цитоплазмы к радиационному воздействию показало, что в большинстве случаев чувствительно к облучению ядро (например, облучение ядер сердечной мышцы тритона в дозе нескольких протонов на ядро вызвало типичные деструктивные изменения; доза в несколько тысяч раз большая не повредила цитоплазмы). Многочисленные данные показывают, что клетки более радиочувствительны в период деления и дифференцировки: при облучении поражаются прежде всего растущие ткани. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей - растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

Возникающие в облучаемых клетках изменения ведут к нарушениям в тканях, органах и жизнедеятельности всего организма. Особенно выражена реакция тканей, в которых отдельные клетки живут сравнительно недолго. Это слизистая оболочка желудка и кишечника, которая после облучения воспаляется, покрывается язвами, что ведёт к нарушению пищеварения и всасывания, а затем к истощению организма, отравлению его продуктами распада клеток и проникновению бактерий, живущих в кишечнике, в кровь.

Сильно повреждается кроветворная система, что ведёт к резкому уменьшению числа лейкоцитов в периферической крови и к снижению её защитных свойств. Одновременно падает и выработка антител, что ещё больше ослабляет защитные силы организма. (Уменьшение способности облученного организма вырабатывать антитела и тем самым противостоять внедрению чужеродного белка используется при пересадке органов и тканей - перед операцией пациента облучают.) Уменьшается и количество эритроцитов, с чем связано нарушение дыхательной функции крови. Ионизирующее излучение также обусловливает нарушение половой функции и образования половых клеток вплоть до полного бесплодия (стерильности) облученных организмов.

Важную роль в развитии лучевого поражения животных и человека играет нервная система. Так, у кроликов смертельный исход при облучении в дозе 10 Гр часто определяется нарушениями в центральной нервной системе, вызывающими остановку сердечной деятельности и паралич дыхания. Исследования биоэлектрических потенциалов мозга облученных животных и людей, подвергающихся лучевой терапии, показали, что нервная система раньше других систем организма реагирует на радиационное воздействие. Облучение собак в дозе 5-20 р и хроническое облучение в дозе 0,05 р при достижении дозы в 3 р ведёт к изменению условных рефлексов. Большую роль в развитии лучевой болезни играют и нарушения деятельности желёз внутренней секреции.

Для действия ионизирующего излучения на биологические объекты характерно последействие, которое может быть очень длительным, т.к. по окончании облучения цепь биохимических и физиологических реакций, начавшихся с поглощения энергии излучения, продолжается долгое время – рисунок 2. К отдалённым последствиям облучения относятся изменения крови (уменьшение числа лейкоцитов и эритроцитов), нефросклероз, циррозы печени, изменения мышечных оболочек сосудов, раннее старение, появление опухолей. Эти процессы связаны с нарушением обмена веществ и нейроэндокринной системы, а также повреждением генетического аппарата клеток тела (соматические мутации).

Лучевое повреждение организма сопровождается также процессом восстановления, который связан с нормализацией обмена веществ и регенерацией клеток. Поэтому облучение дробное или с малой мощностью доз вызывает меньшее повреждение, чем интенсивное воздействие. Изучение процессов восстановления важно для поисков радиозащитных веществ, а также средств и методов защиты организма от излучений. В небольших дозах все обитатели Земли постоянно подвержены действию ионизирующего излучения - космических лучей и радиоактивных изотопов, входящих в состав самих организмов и окружающей среды. Испытания атомного оружия и применение атомной энергии в мирных целях повышают радиоактивный фон.

В сельском хозяйстве радиационные воздействия применяются с целью выведения новых форм растений, для предпосевной обработки семян, борьбы с вредителями (путём выведения и выпуска на поражаемые плантации обеспложенных облучением самцов), для лучевой консервации фруктов и овощей, предохранения продуктов растениеводства от вредителей (дозы, губительные для насекомых, безвредны для зерна) и др.

^ 2.1 Действие ионизирующих излучений на микроорганизмы

Микроорганизмы, по чувствительности к радиационному действию, обычно располагают в таком порядке: - наиболее чувствительны бактерии, затем плесени, дрожжи, споры бактерий, вирусы. Однако это разделение не абсолютно, так как среди бактерий есть виды более радиоустойчивые, чем вирусы.

Радиочувствительность микроорганизмов модифицируют различные факторы, как внутренние: генетическая природа самой клетки, жизненная фаза клетки и другие, так и внешние: температура, концентрация кислорода и других газов, состав и свойства среды в которой производится облучение, а также тип радиационного воздействия и его мощность и другие факторы. Радиочувствительность микроорганизмов значительно ниже, чем у растений и животных на 1-2 порядка, в ряде случаев бактерицидный эффект для некоторых видов может быть достигнут только при значительных дозах: 1-2 Мрад.

Уже на первых этапах исследования радиационной чувствительности микроорганизмов было показано, что при дозе 5000 Р значительно снижается выживаемость кишечной палочки, а при дозе 20 кР погибает 95 % бактерий. Культура микроорганизмов каждого вида содержит смесь клеток, различных по чувствительности к радиации. Например для культуры кишечной палочки 66% LD 50 соответствовала доза 1,2 крад, а для 34 % бактерий – 3,5 крад. При облучении бактерий кишечной группы гамма лучами, их инактивация происходит в пределах от 24 до 168 крад, а гибель всех клеток при дозах около 300 крад.

Для получения одинакового биологического эффекта у различных видов микроорганизмов требуются различные дозы излучения. Эти различия зависят от ряда биологических особенностей облучаемых бактерий, условий облучения, влияния внешней среды и других факторов. Особое значение придается неодинаковой чувствительности нуклеинового обмена и ДНК различных организмов к радиационному облучению.

Чувствительность бактерий к радиации значительно изменяется внутри одного и того же вида и, даже, популяции бактериальных клеток. Популяция клеток состоит из бактерий, располагающихся по устойчивости к радиации в вариационный ряд, так же, как и по другим биологическим признакам. Поэтому в популяции всегда присутствуют особо радиорезистентные клетки, для того, чтобы их убить, нужно облучать более мощными дозами, чем те, при которых погибает основная масса клеток более радиочувствительных. Грамположительные бактерии менее чувствительны к облучению, чем грамотрицательные.

Споры бактерий обладают очень низкой радиочувствительностью, но и среди неспорообразующих микроорганизмов известны организмы радиоустойчивость которых может превышать устойчивость спор. Чаще всего они принадлежат к кокам или сарцинам. Известны микрококки, у которых полулетальная доза равна 400 крад (4 кГр). При лучевой стерилизации мяса, рыбы и других продуктов наиболее часто после облучения в дозах от 600 до 1500 крад обнаруживали кокков. Примером высокой радиоустойчивости могут быть также бактерии, выделяемые из вод атомных реакторов.

^ 2.2 Действие ионизирующих излучений на растения

В целом, растения более устойчивы к радиационному воздействию, чем птицы и млекопитающие. Облучение в небольших дозах может стимулировать жизнедеятельность растений – рисунок 3 - прорастание семян, интенсивность роста корешков, накопление зелёной массы и др. Нужно отметить, что дозовая кривая, приведенная на этом рисунке безусловно повторяется в опытах в отношении самых разнообразных свойств растений для доз радиационного воздействия, вызывающих угнетение процессов. В отношении стимуляции дозовая характеристика процессов не так очевидна. Во многих случаях проявление стимуляции на живых объектах не наблюдается.


Рисунок 3 - Зависимость числа проросших глазков картофеля сорта от дозы облучения

Большие дозы (200 - 400 Гр) вызывают снижение выживаемости растений, появление уродств, мутаций, возникновение опухолей. Нарушения роста и развития растений при облучении в значительной степени связаны с изменениями обмена веществ и появлением первичных радиотоксинов, которые в малых количествах стимулируют жизнедеятельность, а в больших - подавляют и нарушают её. Так, промывка облученных семян в течение суток после облучения снижает угнетающий эффект на 50-70%.

У растений лучевая болезнь возникает под воздействием различных видов ионизирующих излучений. Наиболее опасны альфа-частицы и нейтроны, нарушающие нуклеиновый, углеводный и жировой обмен в растениях. Очень чувствительны к облучению корни и молодые ткани. Общий симптом лучевой болезни - задержка роста. Например, у молодых растений пшеницы, фасоли, кукурузы и других задержка роста наблюдается через 20-30 ч после облучения дозой более 4 Гр. В то же время разными исследователями показано, что облучение воздушно-сухих семян многих культур дозами 3-15 Гр не только не приводит к угнетению роста и развития растений, а напротив способствует ускорению многих биохимических процессов. Это выражалось в ускорении развития и увеличении урожайности.

Установлены видовые, сортовые и индивидуальные внутрисортовые различия в радиочувствительности растений. Например, симптомы лучевой болезни у традесканции возникают при её облучении дозой 40 р, у гладиолуса - 6000 р. Смертельная доза облучения для большинства высших растений 2000-3000 р (поглощенная доза порядка 20-30 Гр), а низших, например дрожжей, 30 000 р (300 Гр). При лучевой болезни повышается также восприимчивость растений к инфекционным болезням. Пораженные растения нельзя использовать в пищу и на корм скоту, так как они могут вызвать лучевую болезнь у человека и животных. Методы защиты растений от лучевой болезни разработаны недостаточно.

^ 2.3 Действие ионизирующих излучений на беспозвоночных

Радиочувствительность беспозвоночных изменяется в значительных пределах: полулетальная доза у некоторых асцидий, кишечно-полосных, членистоногих, нематод колеблется в пределах от 30 до 50 Гр. У моллюсков она находится в пределах 120-200 Гр, у амеб эта величина достигает 1000 Гр, а у инфузорий устойчивость близка к устойчивости микроорганизмов - LD 50 находится в пределах 3000 - 7000 Гр.

Радиочувствительность зависит как от совокупности свойств организма и состояния окружающей среды, так и от периода онтогенеза. Так у дрозофилы полулетальная доза в стадии имаго равна 950 Гр, в стадии куколки 20-65 Гр, чувствительность яиц, в зависимости от времени колеблется от 2 до 8 Гр, а в стадии личинки она равна 100-250 Гр.

^ 2.4 Действие ионизирующих излучений на позвоночных

Чувствительность позвоночных к радиационному воздействию значительно выше, чем у предыдущих групп организмов. Наиболее радиоустойчивы змеи, у которых LD 50 находится в пределах от 80 до 200 Гр, у тритонов и голубей она соответствует величинам 25-30 Гр, у черепах – 15-20 Гр, у кур – 10-15 Гр, для карповых рыб – 5-20 Гр, для грызунов 5-9 Гр. Млекопитающие еще менее устойчивы к действию радиации. Полулетальная доза для собак 2,5-4 Гр, а у обезьян 2- 5,5 Гр.

У животных лучевая болезнь. наиболее изучена у одомашненных млекопитающих и птиц. Различают острую и хроническую лучевую болезнь. Острая возникает при однократном общем облучении экспозиционными дозами: 1,5-2,0 Гр (лёгкая степень), 2,0-4,0 Гр (средняя), 4,0-6,0 Гр (тяжёлая) и свыше 6,0 Гр (крайне тяжёлая). В зависимости от тяжести течения лучевой болезни. у животных наблюдают угнетение, ухудшение аппетита, рвоту (у свиней), жажду, поносы (могут быть со слизью, кровью), кратковременное повышение температуры тела, выпадение волос (особенно у овец), кровоизлияния на слизистых оболочках, ослабление сердечной деятельности, лимфопению и лейкопению. При крайне тяжёлом течении - шаткость походки, мышечные судороги, понос и смерть. Выздоровление возможно при лёгком и среднем течении болезни. Хроническая лучевая болезнь. развивается при длительных воздействиях небольших доз общего гамма-излучения или поступивших внутрь организма радиоактивных веществ. Она сопровождается постепенным ослаблением сердечной деятельности, нарушением функций желёз внутренней секреции, истощением, ослаблением сопротивляемости инфекционным болезням.

Лечению предшествует вывод животных из зараженной местности, удаление радиоактивных веществ с наружных покровов водой, моющими и другими средствами. В начале болезни рекомендуют переливание крови или кровезаменителей, внутривенное введение 25-40%-ного раствора глюкозы с аскорбиновой кислотой. При заражении через пищеварительный тракт - применяют адсорбенты (водная смесь костной муки или сернокислого бария с йодистым калием), при поражении через лёгкие - отхаркивающие средства.

При внутреннем поражении животных радиоактивные вещества выделяются из организма, загрязняя внешнюю среду, а с продуктами питания (молоко, мясо, яйца) могут попадать в организм человека. Продукты от животных, подвергшихся лучевому поражению, не используются в пищу или на корм зверям, так как могут вызвать у них лучевую болезнь.

«Влияние радиации на человека» - Бытовая электротехника. Что беспокоит после общения по телефону. Вопросы проекта. Влияние сотовой связи на сердечно – сосудистую систему. Озоновый слой. При обнаружении плоскоклеточного рака кожи человека, в гене обнаруживаются мутации. Солнечная излучение Солнца, поток радиации электромагнитных колебаний различной длины.

«Действие радиации» - Локальные. Потеря озона может привести к увеличению количества УФ-В радиации, достигающей земли. Одной из причин депопуляции является образование новообразований 12,3%. Репродуктивные органы и глаза также отличаются повышенной чувствительностью к облучению. Источники радиоактивных загрязнений. IV.Массовые.

«Доза радиации для человека» - Число женщин, обслуживающих компьютерную технику, должно быть сведено до минимума. 1.Введение. 6.Методы и средства защиты от ионизирующих излучений. Продукты питания, завозимые из зоны ЧАЭС. Включают в себя организационные. Нуклиды свинца-210, полония-210 концентрируются в рыбе и моллюсках. В Ростовской области нет ни урановых разработок, ни центров по производству ядерного топлива.

«Биологическое действие радиоактивных излучений» - Правила. В человеческом организме нарушается процесс кроветворения, приводящий к дисбалансу белых и красных кровяных телец. Явление радиоактивности было открыто опытным путем французским ученым Анри Беккерелем в 1896 г. для солей урана. - Разрушение хромосом - нарушение способности к делению - изменение проницаемости клеточных мембран - разбухание ядер клеток.

«Воздействие радиации» - К уроку по физике. Мощность излучения. Нормы радиоактивности. Нормальный радиационный фон. Техногенная радиоактивность. Период полураспада. Биологическое воздействие радиации. Что такое период полураспада. Воздействие радиации. Экспозиция. Трещины и щели. Что такое изотопы. Заряженные частицы. Вред радиационного облучения.

«Воздействие радиации на живые организмы» - Другие источники радиации. Естественное облучение. Радиация и ее воздействие на живой организм. Смертельная доза ионизирующего излучения для человека. Внутреннее облучение. Мировой выброс урана и тория от сгорания угля. В природе радон встречается в двух основных формах. Воздействие радиации на живой организм.

Всего в теме 11 презентаций

Влияние радиации на клетки организма.

Растения Томской области, снижающие радиационное воздействие.

Выполнили:

Крутых Оксана

Филинова Анастасия

ЗАТО Северск

Цели работы

    Выявить растения Томской области, эффективно снижающие влияние радиации на организм.

    Выявить группы населения, в рационе которых содержится минимум продуктов, уменьшающих радиационное воздействие и распространить информацию о необходимости их употребления.

Задачи

    Изучить механизм влияние радиации на клетки организм.

    Рассмотреть последствия влияния радиационного излучения на организм (на примере населения городов Хиросимы и Нагасаки).

    Выявить вещества, способные снизить воздействие радиации на организм.

    Выявить растения Томской области, содержащие эти вещества.

    Провести опрос населения.

    Проверить на практике эффективность растений.

    распространить информацию среди населения о необходимости употребления веществ, снижающие влияние радиации на организм.

Актуальность проблемы

Существует два вида радиоактивности: естественная и техногенная. Для техногенных источников радиации опасность облучения выражена гораздо сильнее, чем для естественных. За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров. Все это приводит к увеличению дозы облучения, как отдельных людей, так и населения Земли в целом.

Поэтому становится очень важной защита человека от возрастающего влияния радиации на организм, которое ведет к различным нарушениям физиологических процессов и патологиям. В этом проекте рассмотрена возможность сохранения здоровья человека в данной ситуации с помощью самой природы. Используя доступные в нашем регионе растения постоянно, мы способны защититься от естественного радиационного фона, а совместно с медикаментозными средствами эффективно лечить серьезнейшие заболевания, возникающими при получении большой дозы радиации.

Радиация и организм человека

Влияние радиации на клетки организма

Все живые существа состоят из клеток - основных строительных «кирпичиков» жизни. Повреждением биологически важных макромолекул далеко не полностью объясняется радиационное поражение клетки. Клетка – слаженная динамическая система биологически важных макромолекул, которые скомпонованы в субклеточных образованьях, выполняющих определенные физиологические функции. Поэтому эффект действия радиации можно понять, только приняв во внимание изменения, происходящие как в самих клеточных органеллах, так и во взаимоотношениях между ними.

Наиболее чувствительными к облучению органеллами клеток организма млекопитающих являются ядро и митохондрии. Повреждения этих структур при малых дозах и проявляются в самые ранние сроки. Так, при облучении митохондрий лимфатических клеток дозой 50 Р. и более наблюдается угнетение процессов окислительного фосфорилирования в ближайшие часы после облучения. При этом обнаруживаются изменения физико-химических свойств нуклеопротеидных комплексов, в результате чего количественно и качественно изменяются ДНК, и разобщается процесс синтеза ДНК – РНК – белок. В ядрах радиочувствительных клеток почти тотчас же после облучения угнетаются энергетические процессы, происходит выброс в цитоплазму ионов натрия и калия, нарушается нормальная функция мембран. Одновременно возможны разрывы хромосом, выявляемые в период клеточного деления, хромосомные аберрации и точковые мутации, в результате которых образуются белки, утратившие свою нормальную биологическую активность. Более выраженной радиочувствительностью, чем ядра, обладают митохондрии.

Эффект воздействия ионизирующей радиации на клетку – результат комплексных взаимосвязанных и взаимообусловленных преобразований. Радиационное поражение клетки осуществляется в три этапа. На первом этапе излучение воздействует на сложные макромолекулярные образования, ионизируя и возбуждая их.

Поглощенная энергия может мигрировать по макромолекулам, реализуясь в слабых местах. В ДНК - хромофорные группы тимина, в липидах - ненасыщенные связи. Указанный этап повреждения может быть назван физической стадией лучевого воздействия на клетку.

Второй этап – химические преобразования. Они соответствуют процессам взаимодействия радикалов белков, нуклеиновых кислот и липидов с водой, кислородом, радикалами воды с биомолекулами и возникновению органических перекисей, вызывающих быстро протекающие реакции окисления, которые приводят к появлению множества измененных молекул. В результате этого начальный эффект многократно усиливается. Радикалы, возникающие в слоях упорядоченно расположенных белковых молекул, взаимодействуют с образованием «сшивок», в результате чего нарушается структура биологических мембран. Повреждение мембран приводит к высвобождению ряда ферментов. В результате повреждения лизосомных мембран наблюдается увеличение активности ДНК-азы, РНК-азы, и ряда других ферментов.

Третий этап – биохимический. Высвободившиеся ферменты путем диффузии достигают любой органеллы клетки и легко проникают в нее благодаря увеличению проницаемости мембран. Под воздействием этих ферментов происходит распад высокомолекулярных компонентов клетки, в том числе нуклеиновых кислот и белков.

Действие ничтожно малых количеств поглощенной энергии оказывается для клетки губительным из-за физического, химического и биохимического усиления радиационного эффекта, и основную роль в развитии этого эффекта играет повреждение над-молекулярных структур, обладающих высокой радиочувствительностью.

Последствия влияния радиационного излучения на организм

Последствия, которые вызывает воздействие излучения в живых организмах, в частности в человеке, можно классифицировать различными способами, зависящими главным образом от величины полученной дозы. Эти последствия перечислены в следующем порядке:

Нужно отметить, что у людей получивших облучение, по прошествии десятилетий начинают развиваться раковые опухоли. Раковая опухоль возникает в тот момент, когда соматическая клетка, выйдя из-под контроля организма, начинает неистово делиться, несмотря на создаваемую угрозу для живого существа в целом. В результате формируется одиночная крупная масса клеток или группа более мелких образований.

На рисунке 1 показаны коэффициенты радиационного риска в организме человека. На нем показано, что большей степенью риска подвержены половые органы (яичники или семенники), красный косный мозг.

Вследствие губительного влияния радиации на клетки (описанного выше) косного мозга у человека начинает развиваться серьезное заболевание – лейкоз.

Лейкоз (лейкемия, белокровие, рак крови) (от греческих слов leukos-белый и haima-кровь)- опухолевое заболевание красного костного мозга, системы крови и кроветворных органов неопластической природы, в основе которого лежит первичная патология родоначальных клеток кроветворения, сопровождающиеся нарушением процессов их пролиферации и дифференциации и возникновением патологических клонов опухолевых клеток. Изменения в одной и более стволовых клетках буквально наводняет организм неполноценными белыми клетками, что собственно и есть лейкоз. Люди, целиком, подвергшиеся облучению умирают от лейкоза примерно через 5-7 лет. Из всех злокачественных заболеваний, вызываемых действием радиации, лейкоз является для нас наиболее изученным, потому что промежуток времени между причиной смерти, его породившей, и развитием клинических симптомов относительно короткий. Связь между облучением организма и возникновением лейкоза хорошо доказана. Частота проявления лейкоза среди выживших жертв атомной бомбардировки зависела от того, на каком расстоянии от взрыва они находились, т.е. от полученной дозы излучения. Хотя именно лейкоз в представлении большинства людей связан с атомной бомбой, по прошествии многих лет стало очевидным, что он не является главной формой рака, вызываемого радиацией. Последующие обследования японцев, выживших после атомной бомбардировки, выявляли у них намного чаще, чем у остального населения рак легкого, молочной железы и, особенно, щитовидной железы. Данные типы раковых заболеваний развиваются гораздо медленнее. В настоящее время на каждый случай радиационного лейкоза приходится приблизительно 3 случая раковых опухолей. Это число продолжает расти и к тому времени, когда не станет людей, переживших атомную бомбардировку Хиросимы и Нагасаки, оно, возможно, станет равным 5.

Лейкозы протекают неравномерно. Различают несколько периодов: начальный, выраженных явлений, ремиссий и рецидивов. В начальной стадии больные чувствуют себя практически здоровыми, и диагноз устанавливается при случайном исследовании крови по поводу сопутствующих заболеваний. В период выраженных явлений все симптомы болезни проявляются в значительной степени, и болезнь начинает быстро прогрессировать.

В результате специфической терапии, а иногда и самопроизвольно наступает период улучшения в состоянии больного или стадия ремиссии. В этот период больной сохраняет трудоспособность.

Обострение всякого лейкоза сопровождается резким ухудшением общего состояния больного, появлением лихорадки, увеличением печени, селезенки и лимфатических узлов, развитием анемии, снижением тромбоцитов.

В период обострений лейкоз нередко переходит в конечную, кахектическую стадию.

Обратим внимание на влияние ионизирующей радиации на половые органы человека. Изменения в клетках организма, приводящие к возникновению рака, и мутации в половых клетках, оказывающие влияние на будущие поколения, являются биологическими последствиями в результате работы на атомных электростанциях. Воздействие радиации на развивающийся зародыш или плод представляет собой особый случай, заслуживающий специального обсуждения, поскольку все усилия надо направлять на его исключение. Возникновение смерти непосредственно в момент излучения связанно с получением огромной дозы радиации. Последнее возникает только в катастрофической ситуации, например при взрыве атомной бомбы или аварии на атомном реакторе.

Если мутация происходит в зародышевой клетке (в сперматозоиде или в яйцеклетке), последствия будут ощутимыми не только для индивидуума, который разовьется из этой клетки, но и в ком-то из будущих поколений. Слияние сперматозоида с яйцеклеткой образует крошечный организм, едва заметный, но несущий нить нашей наследственности. Каждая клетка мужская и женская содержит по 23 одиночные хромосомы. Когда эти две клетки сливаются вместе, 23 одиночные хромосомы отцовской зародышевой клетки попарно объединяются с 23 одиночными хромосомами материнской зародышевой клетки, образуя первую клетку нового человеческого, содержащую уже 23 пары хромосом, т. е. Всего 46 хромосом. (рис.2)


Хромосомы несут в закодированной форме все признаки, которые отличают организм человека от других животных. Они содержат информацию, необходимую для воспроизведения всех особенностей, «имеющихся данном роде». Хромосомы - длинные нитевидные структурные клетки, состоящие из сложного вещества, называемого дезоксирибонуклеиновой кислотой (ДНК), представляющей собой очень крупную молекулу. Основу ДНК образуют углеводы и остатки фосфорной кислоты, служащие в качестве скелета для удержания на определенном месте особых молекул, несущих наследственный код. Иногда участки генетического кода могут меняться местами, при этом порядок следования пар азотистых оснований нарушается. В хромосоме происходит дефект, который переходит во все дочерние клетки, получаемые при делении. Когда поврежденный ген или хромосома появятся в сперматозоиде или яйцеклетке, во всех клетках образованного зародыша повторится это повреждение. Если этот эмбрион не погибнет, а со временем вырастет и станет сам родителем, генетический дефект сможет перейти к его детям и проследовать через следующие поколения. Любая клетка, содержащая всевозможные нарушения в хромосомах и генах, называется мутированной клеткой. Посмотрим набор хромосом человека подвергнутого ионизирующему облучению. (Рис 3)влиянию ... снижающие накопления радиоактивных веществ в сельскохозяйственных растениях ...

  • Лекции по Безопасности жизнедеятельности

    Реферат >> Безопасность жизнедеятельности

    ... растений и резкое увеличение численности вредителей растений на ... Рязанской области на нефтеперерабатывающем... влиянии на ... радиации на живой организм ... снижающие внутреннее облучение организма ... клетки на ... на радиохимическом заводе Сибирского химкомбината в г. Томске ...

  • Экология и экономика природопользования

    Реферат >> Экология

    ... организмы на Земле - зеленые растения , ... влияние на выбор оказывает величина удельных затрат на очистку на ... ионизирующей радиации на данную... Омская, Томская и Тюменская области ; Ханты... на мероприятия, не снижающие выброс, но влияющие на степень их воздействия на ...

  • Исследование аварийной экотоксикологической ситуации и меры по ее устранению хром

    Курсовая работа >> Экология

    ... растений ; - - негативного влияния выбросов на ... района, области ; ... влияния различных антропогенных факторов на живой организм , в частности на белки, в том числе и на ... клетки ... влияния нескольких элементов – эффектов их антагонистического (снижающегося ... 2001 ― Томск , ― ...

  • ВВЕДЕНИЕ

    Во время радиоактивного распада ядер испускаются б-, в- и г- лучи, обладающие ионизационной способностью. Облучаемая среда частично ионизируется поглощаемыми лучами. Эти лучи взаимодействуют с атомами облучаемого вещества, что приводит к возбуждению атомов и вырыванию отдельных электронов из их электронных оболочек. В результате атом превращается в положительно заряженный ион (первичная ионизация). Выбитые электроны, в свою очередь, сами взаимодействуют со встречными атомами, вызывая вторичную ионизацию. Электроны, затратившие всю энергию, «прилипают» к нейтральным атомам, образуя отрицательно заряженные ионы. Число пар ионов, создаваемых в веществе ионизирующими лучами на единице длины пробега, называется удельной ионизацией, а расстояние, пройденное ионизирующей частицей от места ее образования до места потери энергии движения, называется длиной пробега.

    Ионизирующая способность различных лучей неодинакова. Она наиболее высока у альфа-лучей. Бета-лучи вызывают меньшую ионизацию вещества. Самой низкой ионизационной способностью обладают гамма-лучи. Проникающая же способность наивысшая у гамма-лучей, а наинизшая - у альфа-лучей.

    Не все вещества одинаково поглощают лучи. Высокой поглощающей способностью обладают свинец, бетон и вода, которые чаще всего и используют для защиты от ионизирующих излучений.

    Факторы, определяющие реакцию растений на облучение

    Степень поражения тканей и растительного организма в целом зависит от множества факторов, которые можно разделить на три основные группы: генетические, физиологические и условия внешней среды. К генетическим факторам относятся видовые и сортовые особенности растительного организма, которые в основной определяются цитогенетическими показателями (размером ядра, хромосом и количеством ДНК). Цитогенетические характеристики -- размеры ядер, число и строение хромосом -- определяют радиоустойчивость растений, которая находится в тесной зависимости от объема клеточных ядер. К физиологическим факторам относят фазы и стадии развития растений в момент начала облучения, скорость роста и обмен веществ растительного организма. К факторам внешней среды относят погодно-климатические условия в период облучения, условия минерального питания растений и т. д.

    Объем клеточного ядра отражает содержание в нем ДНК, существует связь между чувствительностью растений к облучению и количеством ДНК в ядрах их клеток. Поскольку число ионизации внутри ядра пропорционально его объему, то чем больше объем ядра, тем больше повреждений хромосом будет приходиться на единицу дозы. Однако обратной пропорциональной зависимости между величиной летальной дозы и объемом ядра не наблюдается. Это обусловлено тем, что число и строение хромосом в клетках растений различных видов неодинаково. Поэтому более верным показателем радиочувствительности служит величина объема ядра в расчете на одну хромосому, т. е. отношение объема ядра в интерфазе к числу хромосом в соматических клетках (кратко называют объемом хромосом). В логарифмическом масштабе эта зависимость выражается прямой с тангенсом угла наклона, равным 1, т. е. между указанными характеристиками существует линейная связь (рис.).

    Радиочувствительность различных растений при хроническом облучении (по А. Спэрроу)

    Зависимость радиочувствительности древесных (а) и травянистых (б) растений от объема интерфазных хромосом (по Спэрроу, 1965): 1--острое облучение (экспозиция в Р); 2 -- хроническое об» лучение (экспозиция в Р/сут)

    Из этого следует, что произведение двух величин -- дозы (или мощности дозы) и объема хромосомы при данной степени лучевого повреждения -- величина постоянная, т. е. при постоянном среднем числе ионизации в каждой хромосоме появляется одинаковая вероятность повреждения генетического материала клетки. Это означает, что для лучевого поражения клеток растений существенна не столько величина удельной поглощенной дозы (например, на 1 г ткани), сколько величина энергии излучения, поглощенной ядерным аппаратом. Обратная пропорциональность изоэффективных доз размерам хромосомного аппарата означает, что среднее количество энергии, адсорбированной хромосомами при экспозициях, необходимых для вызывания данного эффекта, примерно постоянно в пределах каждой растительной группы, т. е. для деревьев и трав. Изоэффективная доза -- доза, оказывающая такой же (подобный) эффект.

    На устойчивость растений к облучению влияет и степень плоидности растительных организмов. Более чувствительны диплоидные виды. Дозы, повреждающие полиплоидные виды, выше. Полиплоидные виды устойчивы к радиационному поражению и к действию других неблагоприятных факторов, поскольку обладают избытком ДНК.

    Из физиологических факторов на радиочувствительность растений влияет скорость роста, т. е. скорость клеточного деления. При остром облучении зависимость радиочувствительности от скорости деления подчиняется закону Бергонье -- Трибондо: растения обладают большей радиочувствительностью в стадии наиболее интенсивного роста, медленно растущие растения или их отдельные ткани устойчивее к действию облучения, чем растения или ткани с ускоренным ростом. При хроническом облучении проявляется обратная зависимость: чем выше скорость роста, тем меньше угнетаются растения. Это обусловлено интенсивностью деления клеток. Быстро делящиеся клетки накапливают за время одного акта клеточного цикла меньшую дозу и, следовательно, повреждаются слабее. Такие клетки имеют больше возможностей перенести облучение без существенного нарушения функций. Поэтому при облучении в сублетальных дозах любой фактор, увеличивающий продолжительность митоза или мейоза, должен усиливать радиационное повреждение, вызывая увеличение частоты наведенных излучением хромосомных перестроек и более сильное торможение скорости роста.

    Критерий действия ионизирующих излучений на растения. Поскольку радиочувствительность -- явление сложное, комплексное, определяющееся многими факторами, следует остановиться на тех методах оценки и критериях, по которым судят о степени радиочувствительности растений. Обычно в качестве таких критериев используют: подавление митотической активности при клеточном делении, процент поврежденных клеток в первом митозе, число хромосомных аберраций на одну клетку, процент всхожести семян, депрессии в росте и развитии растений, радиоморфозы, процент хлорофильных мутаций, выживаемость растений и в конечном результате урожай семян. Для практической оценки снижения продуктивности растений от воздействия радиации обычно используют два последних критерия: выживаемость растений и их урожай.

    Количественная оценка радиочувствительности растений по критерию выживаемости устанавливается по показателю ЛД 50 (или ЛД 50 , ЛД 100). Это величина дозы, при которой погибает 50 % (или 70, 100 %) из числа всех облученных особей. Показатель ЛД 50 может быть использован также и при оценке потерь урожая в результате радиационного поражения растений. В этом случае он показывает, при какой дозе облучения растений их урожай снижается на 50 %.

    Радиочувствительность растений в разные периоды их развития. В процессе роста и развития радиочувствительность растений существенно изменяется. Это обусловлено тем, что в различные периоды онтогенеза растения отличаются не только морфологическим строением, но и разнокачественностью клеток, тканей, а также характерными для каждого периода физиолого-био-химическими процессами.

    При остром облучении растений в различные периоды онтогенеза они реагируют по-разному в зависимости от этапа органогенеза в момент начала облучения (рис.). Радиация вызывает у растений поражение тех органов и смещение тех процессов, которые формируются и протекают в период воздействия. В зависимости от величины дозы облучения эти изменения могут носить либо стимулирующий, либо повреждающий характер.

    Радиационное поражение растений в той или иной степени затрагивает все органы и все функциональные системы организма. Наиболее чувствительными «критическими органами», повреждение которых определяет развитие и результат радиационного поражения растений, являются меристематические и эмбриональные ткани. Качественный характер реакции растений на их облучение зависит от биологической специфичности морфофизиологического состояния растений в период накопления основной дозы облучения.

    Колебания радиоустойчивости растений в онтогенезе (Батыгин, Потапова, 1969)

    По поражению основного побега все культуры проявляют наибольшую чувствительность к действию радиации в первый период вегетации (I и III этапы органогенеза). Облучение растений в эти периоды тормозит ростовые процессы и нарушает взаимосогласованность физиологических функций, определяющих формообразовательные процессы. При дозах облучения, превышающих их критические значения для определенной культуры (ЛД 70), во всех случаях наблюдается гибель основного побега злаковых растений.

    Если растения подвергаются облучению на ранних этапах органогенеза (I и V), образуются дополнительные побеги, которые при благоприятных условиях сезона успевают дойти до созревания и дать урожай, компенсирующий в той или иной мере потери, связанные с гибелью главного побега. Облучение растений на VI этапе органогенеза -- в период формирования материнских клеток пыльцы (мейоз) -- может привести к значительной стерильности и потере урожая зерна. Критическая доза облучения (например, 3 кР для пшеницы, ячменя и гороха) в этот период вызывает полную стерильность соцветий основных побегов. Дополнительные побеги кущения или ветвления, развивающиеся у этих растений в сравнительно позднее время, не успевают завершить свой цикл развития и не могут компенсировать потери урожая с основных побегов.

    При облучении растений на том же VI этапе органогенеза в период формирования одноядерных пыльцевых зерен устойчивость к действию ионизирующей радиации у растений значительно повышается. Например, при облучении пшеницы дозой 3 кР в период мейоза урожай зерна практически равен нулю, тогда как при облучении растений в период формирования одноядерной пыльцы наблюдается снижение урожая на 50%. На последующих этапах органогенеза устойчивость растений к действию радиации возрастает еще сильнее. Облучение растений в период цветения, эмбриогенеза и налива зерна при одних и тех же дозах не вызывает заметного снижения их продуктивности. Следовательно, к наиболее чувствительным периодам относятся прорастание семян и переход растений от вегетативного состояния к генеративному, когда закладываются органы плодоношения. Эти периоды характеризуются повышенной метаболической активностью и высокой интенсивностью клеточного деления. Наиболее устойчивы растения к радиации в период созревания и в период физиологического покоя семян (табл.). Злаковые культуры более радиочувствительны в фазы выхода в трубку, кущения и колошения.

    Выживание озимых культур при их облучении в осенне-зимне-весенний период заметно повышается при посеве озимых культур в наиболее ранние из установленных сроков. Это объясняется, очевидно, тем, что облученные растения, уходя под зиму более окрепшими, в состоянии полного кущения, оказываются более устойчивыми к последствиям действия радиации.

    Аналогичная закономерность снижения урожая зерна при облучении растений в разные фазы развития получена и на других культурах. Зерновые бобовые культуры обладают наибольшей радиочувствительностью в период бутонизации. Самое резкое снижение урожая овощных культур (капуста, свекла, морковь) и картофеля наблюдается при воздействии ионизирующего облучения в период всходов.

    Все зерновые культуры обладают максимальной радиочувствительностью в фазе выхода в трубку. В зависимости от биологических особенностей растений наблюдается некоторое различие. Так, овес проявляет максимальную радиочувствительность в конце фазы выхода в трубку и в период выметывания метелки.

    Снижение урожая зерна озимых зерновых культур (пшеница, рожь, ячмень) в зависимости от облучения растений г-лучами в разные фазы развития растений, % к необлученному контролю

    Отрицательное действие внешнего г-облучения меньше сказывается на продуктивности зерновых культур при их облучении в фазе кущения. При частичном повреждении растений происходит усиленное кущение и в целом снижение урожая компенсируется за счет формирования вторичных побегов кущения. Облучение зерновых культур в период молочной спелости не вызывает заметного повышения стерильности колосьев.

    Радиоактивные вещества поступают в растения двумя основными путями: загрязнения растений радиоактивными веществами, которые оседают из атмосферы непосредственно на растения и усвоения растениями радионуклидов из почвы. В вегетационный период загрязнения растений радионуклидами может происходить одновременно двумя путями.

    Загрязнение сельскохозяйственных растений внекорневой путем поступления обусловливается природой радиоизотопов, условиями внешней среды, физико-химическими свойствами радиоактивных веществ и б биологическими свойствами росли.

    Уровни радиоактивного загрязнения растений зависят от концентрации радионуклидов в атмосфере и интенсивности их оседания. Значительную роль играет дисперсность радиоактивных веществ, чем крупные частицы, т тем меньше их задерживается на растениях на степень фиксации растениями радионуклидов влияют химические свойства. У растения проникают наиболее подвижные радионуклиды, в первую очередь йод и цезийзій.

    На степень радиоактивного загрязнения растений влияют морфологические особенности. Задержка растениями радиоактивных веществ увеличивается с ростом и развитием вегетативной массы, с горизонтальным размещен нням листьев и стеблей, наличием складок, морщинистости, опушености и смолистых отложенияхь.

    На уровне радиоактивного загрязнения существенно влияют условия внешней среды. Повышенная влажность воздуха увеличивает степень задержания на растениях радиоактивных веществ, и наоборот, сильный дождь змы ивае их с рослин.

    Уменьшение загрязнения растений радионуклидами со временем уменьшается благодаря действию всех факторов внешней среды: смыванию дождем, сдувания ветром, отряхивания животными, опадение с отмершим старым л листья.

    Облучение растений происходит радиоактивными веществами, находящимися на растениях и на поверхности почвы

    Радиационное поражение растений в основном происходит вследствие бета-излучения. Бета-лучи сильнее поглощаются органами растений: листьями, стеблями, точками роста, генеративными органами и семенами

    В общей поглощенной растениями дозе излучения доля бета-излучения может в 10-15 раз превышать долю гамма-излучения в зависимости от вида и высоты растений, т.е. доза облучения, как ку получает, растение в 10-15 раз выше экспозиционной дозы гамма-излучения с дозиметрическими приборам.

    При поражении радиоактивными веществами растений весной и летом в момент их активного роста содержание радионуклидов оказывается наиболее высоким в вегетативных органах - листьях и стеблях растений. Зерно забрю уднюеться меньше и неодинаково у разных культур и сортов: больше в колосовых за счет непосредственного попадания на них радиоактивных веществ, меньше - в бобовых и кукурузыи.

    Лучевое поражение у растений проявляется в торможении и задержке роста, снижении урожайности, уменьшении репродуктивных свойств семян, клубней и корнеплодов. Снижаются пищевые качества урожая. Тяжелое е поражение приводит к полной остановке роста и гибели растений через несколько дней или недель после облученияня.

    Облучение растений может быть внешним, внутренним и смешанным. При внешнем облучении растений бета-частицы равномерно облучают все органы. Внутреннее облучение растений происходит тогда, когда ра адиоактивни вещества попадают в растения через корневую систему и письмотя.

    Наличие источников внешнего и внутреннего излучения дает смешанное облучение

    Степень радиационного поражения (от едва заметного подавления роста к полной потере урожая и даже гибели всех растений) зависит в основном от следующих факторов: полученной дозы облучения и радиочу утливости растений при облучении.

    Радиочувствительность растений количественно характеризуется величиной дозы, которая вызывает определенный эффект - угнетение роста, снижение урожайности, частичную или полную гибель. Различные сельскохозяйственные культуры г имеют различную радиочувствительность. В табл 19 приведены летальные дозы облучения сельскохозяйственных культур. Радиочувствительность растений значительно зависит от их фазы развития растения, которые формируют наземные пло ди, наиболее чувствительны к облучению в фазе закладки и формирования репродуктивных органеганів.

    Таблица 19. Летальные дозы однократного облучения растений в фазе вегетации

    Растения

    Доза облучения, советов

    Растения

    Доза облучения, советов

    Лук репчатый

    Сахарная свекла

    Кукуруза

    Сосна веймутова

    Ель сизая

    Хлопчатник

    Лиственница японская

    Природные травы

    Туя западная

    Помидоры

    Дуб красный

    Картофель

    Клен красный

    Так, пшеница, рожь, ячмень и другие злаковые культуры наиболее чувствительны в фазе выхода в трубку (табл. 20), кукуруза - в фазе выбрасывания метелки, гречка, бобовые и семенники двухлетних культур - в ранней фаз с бутонизации, картофель и корнеплоды - в фазе проростковв.

    Качество семян больше снижается при облучении в фазе колошения у зерновых и цветения - в бобовых. В овощных культур семенники наиболее радиочувствительны в фазе начала бутонизации

    Таблица 20. Возможные потери урожая зерна озимой пшеницы, ржи и ячменя в зависимости от суммарной экспозиционной дозы облучения и фаз развития растений в момент выпадения радиоактивных веществ,%

    Радиоактивные осадки, оседая на растения, не только поражают их, но и загрязняют урожай. Загрязненность урожая радиоактивными веществами зависит от следующих факторов: плотности осадка радиоактивных ве овин; первичного задержания радиоактивных осадков в момент их выпадения на поверхности растений, зависит от вида растений, размеров и растворимости частиц осадков; потерь радиоактивных частиц с заб руднених растений, которые обусловлены смыванием частиц из растений дождями, встряхиванием ветром, опадением отмерших загрязненных частей рослин.

    Похожие статьи