У пациента выявлена гиповолемия: лечение и восстановление состояния. Методы исследования и особенности сердечно-сосудистой системы у детей

Шок является собирательным понятием, когда хотят охарактеризовать экстремальное состояние, возникающее в результате чрезвычайного по силе или продолжительности воздействия и выражающееся комплексом патологических сдвигов в деятельности всех физиологических систем и нарушением жизненно важных функций организма, главным образом системного кровообращения, микроциркуляции, метаболизма, ЦНС, дыхания, эндокринной системы и гемокоагуляции.

В основном, для шока у детей характерно снижение доставки или нарушения утилизации необходимых клеточных субстратов и в первую очередь кислорода. При развитии шока мы констатируем наличие остро развившееся, крайне тяжелое состояние. Для врача, шок в первую очередь воспринимается не как диагноз, а как сигнал тревоги, требующий принятия срочных, а подчас неординарных лечебных мероприятий.

Виды шоков детей

На основании этиологического принципа принято выделять семь видов шока:

  • травматический,
  • септический,
  • гиповолемический (геморрагический),
  • анафилактичекий,
  • ожоговый,
  • нейрогенный,
  • кардиогенный.

В педиатрии наиболее распространены первые четыре вида шока. Принятая у нас категория "травматический шок" рассматривается за рубежом как травма, осложненная кровопотерей, болевым синдромом и охлаждением. Этим подчеркивается, что развитие шока при травме зависит от выраженности сопутствующих явлений и осложнений.

Таблица. Этиология наиболее частых видов шока

ТИП ШОКА ЭТИОЛОГИЯ
Травматический Травма, синдром сдавления, ожоги, обморожения.
Гиповолемический Кровопотеря, диарея, длительная рвота, внутрибрюшинная секвестрация жидкости (в частности при панкреатите), внутрикишечная секвестрация жидкости (например, в случаях обструктивной кишечной непроходимости), секвестрация жидкости в интерстициальное пространство (например, при ожогах, обморожениях, травме тканей, острой потере плазменных белков).
Анафилактический Аллергическая реакция немедленного типа (наиболее часто на лекарственные препараты), идеосинкразия
Септический Бактериальный, вирусный или грибковый сепсис эндотоксемия в связи с массивным разрушением бактерий.
Ожоговый Термические и химические ожоги с большой площадью поражения
Нейрогенный Травма спинного мозга, спинномозговая анестезия, острое расширение желудка.
Кардиогенный Причины, связанные непосредственно с состоянием сердца: инфаркт миокарда, аневризма сердца, острый миокардит, пролапс клапанов, разрыв межжелудочковой перегородки, аритмии. Экстракардиальные причины: перикардит, тампонада перикарда, эмболия легочной артерии, напряженный пневмоторакс.

Причины шока детей

Причины возникновения шоковых ситуаций

Общие патогенетические механизмы основных видов шоковых состояний у детей.

С позиций патофизиологии шок определяется как состояние глубокого угнетения кровообращения. В результате кровообращение становится недостаточным для нормальной оксигенации, питания тканей и выведения из них продуктов метаболизма. В результате нарушения циркуляции крови происходит остановка кровотока в капиллярах (стаз), при затягивающемся шоке белые и красные кровяные тельца склеиваются в микротромбы (сладж). В этом и заключается опасность отсроченного шока, так как клетки не получают необходимого количества кислорода (гипоксия). Этот дефицит кислорода блокирует нормальное расщепление глюкозы в клетках, увеличивается производство молочной кислоты. В крови происходит увеличение содержания сахара, жиров и аминокислот, так как клетки без кислорода не могут справиться с энергоносителями.

В цикле лимонной кислоты вырабатывается меньше энергии АТФ. Недостаток энергии приводит к параличу "насосной функции клетки" в мембранах. В клетки поступают натрий, вода и ионы водорода, выводится калий. Это приводит к внутриклеточному ацидозу, при котором клетки в конечном итоге погибают. За внутриклетечным следует внеклетонный ацидоз. Если развитие шока не прекращается спонтанно (что практически маловероятно) или не прерывается адекватными лечебными мероприятиями, то наступает смерть.

Поскольку шок представляет собой результат острой циркуляторной недостаточности, понимание и оценка его клинических проявлений, симптомово и последующий выбор адекватных лечебных мероприятий должны иметь целью, прежде всего определение характера нарушений и восстановление адекватного кровообращения. Однако в поздних стадиях развития шока этого оказывается недостаточно.

Симптомы шока у детей

Признаки и симптомы шока у детей

Пусковым моментом шока является массивный поток ноцицептивной (болевой) импульсации в кору головного мозга, с развитием разлитого торможения и дисрегуляцией сосудистого тонуса диэнцефальной областью. Основными патогенетическими факторами при этом типе шока являются боль, токсемия, кровопотеря, последующее охлаждение. Влияние токсемии начинает сказываться уже через 15 - 20 мин после травмы или ранения. При синдроме раздавливания и обширных повреждениях мягких тканей ранний токсикоз является одной из основных причин шока. Для синдрома раздавливания характерно ухудшение состояния после освобождения от сдавливания. Чем больше повреждены ткани, тем быстрее наступает и тяжелее протекает недостаточность функции почек, возникающая в результате гиповолемии и токсического поражения почечного эпителия, а также обструкции извитых канальцев гиалиновыми и пигментными цилиндрами, состоящими из миоглобина. Около 35-50% таких больных гибнет от прогрессирующей почечной недостаточности.

Травматический шок у детей

Нарушения кровообращения при типичном травматическом шоке связаны с перераспределением крови в организме: увеличивается наполнение внутренних органов, иногда переполняются кровью сосуды мышц с образованием участков стазов и скоплением эритроцитов. Центральное кровообращение (мозговое и коронарное), так же как периферическое, в этих условиях значительно страдает. В связи с кровопотерей и перемещением больших объемов крови на периферию уменьшается венозный возврат и, следовательно, сердечный выброс.

Симптомы травматического шока

Травматический шок имеет фазовое течение. Впервые Н. И. Пирогов дал классическое описание эректильной и торпидной фазы травматического шока. Эта классификация в настоящее время не используется, но тем не менее не потеряла значения. В эректильной фазе наблюдается превалирование процессов возбуждения и активации эндокринных и метаболических функций. Клинически это проявляется такими симптомами: нормо- или даже гипертензией, тахикардией, усилением работы дыхания, активацией метаболизма. Больной обычно в сознании (реже без сознания), возбужден, беспокоен, болезненно реагирует на всякое прикосновение (повышение рефлекторной возбудимости), кожные покровы бледные, зрачки расширены. Показатели гемодинамики (если не было кровопотери) могут длительно не нарушаться. Торпидная фаза характеризуется различной степени нарушением сознания, отсутствием или слабой реакцией на внешние раздражения. Зрачки расширены, с слабой реакцией на свет. Кожные покровы бледные с землистым оттенком, конечности холодные, часто кожа покрыта холодным, липким потом, температура тела снижена. Пульс частый, слабого наполнения, иногда не прощупывается на конечностях и определяется только на крупных сосудах. Артериальное давление, особенно систолическое, значительно снижено (60-40 мм рт. ст.). Сердечный выброс уменьшен. Определяется метаболический ацидоз. Олиго- или анурия. В отличие от взрослых при травматическом шоке у детей не наблюдается эректильной фазы, но чаще отмечаются расстройства дыхания, а артериальное давление длительное время может оставаться стабильным. Анальгезия и блокада патологических рефлексов предотвращает развитие шока.

Следует помнить, что в развитии симптомов шока у ребенка имеет значение характер и степень повреждения: нарушение дыхания при травме живота или грудной клетки, опасность жировой эмболии при переломах трубчатых костей. В ряде случаев травма сопровождается острой кровопотерей, которая усугубляет прогноз и тяжесть состояния пациента.

Помощь при травматическом шоке

Для купирования боли при травматическом шоке используются различные средства. На этапах первой врачебной помощи используется регионарная блокада зон повреждения, общая анальгезия с применением центральных анальгетиков (морфин 0,5 мг/кг, промедол 0.5-1 мг/кг). Используются для оказания помощи ребенку комбинации морфиномиметиков с дроперидолом и ненаркотическими анальгетиками.

Септический шок у детей

Бактеремия, в особенности вызванная грам-отрицательными бактериями или менингококами, в сочетании с неадекватной тканевой перфузией, может означать развитие септического шока, который характеризуется острой циркуляторной недостаточностью, протекающей обычно с артериальной гипотензией.

Симптомы септического шока

Течение септического шока характеризуется развитием мультиорганной недостаточности, в частности, симптомов респираторного дистресс- синдрома взрослых (РДСВ) и острой почечной недостаточности. В основном септический шок обусловлен внутригоспитальной грам-отрицательной бактериальной флорой и обычно развивается у больных с нарушенным иммунным статусом. Около 30% случаев септического шока обусловлено грам-положительными кокками (Klebsiella pneumoniae, Proteus, Pseudomonas aerugenosa) и в ряде случаев грибковой флорой (Candida). Отдельный вид септического шока вызывается стафилококковыми токсинами и называется токсическим шоком.

Патогенез септического шока

Патогенез этого вида шока изучен недостаточно хорошо. Он развивается более часто у новорождённых и у лиц старше 35 лет. Исключение составляют беременные женщины и больные с тяжёлыми нарушениями иммуного статуса в связи с основным заболеванием или в результате ятрогенного осложнения проводимого лечения. Инфекция запускает комплекс иммунологических реакций, главным образом связанных с выбросом бактериальных токсинов. Однако, в дополнение к действию липидной фракции липополисахаридов, освобождаемых из клеточной стенки грам-отрицательных энтеро-бактерий, развитие септического шока связано с действием большого количества медиаторов: опухолевого некротического фактора, лейкотрейнинов, липоксигеназы, гистамина, брадикинина, серотонина и интерлейкина-2 на сердечно-сосудистую систему и клеточный метаболизм.

Подобная сверхпродукция вазоактивных и метаболически активных факторов ведет, как уже указывалось, к гипердинамическому состоянию, выражающемуся увеличением сердечного выброса и периферической вазодилатацией. Одновременно развивается блокада утилизации кислорода на субклеточном уровне с накоплением лактата, хотя общее снабжение тканей и клеток организма кислородом в этот период остается вполне адекватным. Умеренно повышается температура тела. Пульс частый напряженный при нормальном артериальном давлении и удовлетворительном наполнении шейных вен. Нередко наблюдается некоторое учащение дыхания. Поскольку периферический кровоток в гипердинамической фазе шока повышен, кожа остается теплой, иногда розовой, диурез адекватен. В ряде случаев создается обманчивое впечатление полного благополучия в состоянии больного и не вызывает особых опасений. Однако септический процесс продолжается, что приводит к постепенному перемещению внутрисосудистой жидкости в интерстициальное и внутриклеточное пространства. Уменьшается объем внутрисосудистой жидкости и как неизбежное следствие развивается гиподинамическая фаза шока. С этого момента септический шок более сходен с гиповолемическим. В результате снижения системного и периферического тканевого кровотока кожные покровы у больных становятся холодными и влажными, шейные вены спадаются, пульс учащенный, но слабый, артериальное давление снижается, диурез падает. При неадекватной терапии септического шока развивается кома и вскоре наступает смерть. Успешное лечение описываемой формы шока возможно тогда, когда точно установлена причина его возникновения, определен и дренирован воспалительный фокус и идентифицирован возбудитель. Совершенно очевидно, что до устранения причины септического шока (дренирование флегмон и абсцессов, операции по поводу перитонита различного происхождения и др.) лечение может быть только поддерживающим и симптоматическим.

При прогрессировании септического шока развивается синдром мультиорганной недостаточности, включающий недостаточность функции почек, лёгких и сердца. Также может встречаться внутрисосудистая коагуляция и миокардиальная недостаточность.

Помощь при септическом шоке

Наряду с положительными эффектами стероидной терапии при септическом шоке в настоящее время отмечают также отрицательные стороны их действия. Считается, что массивная стероидная терапия способствует развитию внесосудистого инфекционного фактора, поскольку ингибиция активности полиморфно-ядерных клеток замедляет их миграцию во внеклеточное пространство. Известно, что терапия стероидами повышает риск желудочно-кишечных кровотечений и снижает толерантность к глюкозе у больных в критическом состоянии. Таким образом, имеется целый ряд весомых обстоятельств ограничивающих широкое применение стероидов при лечении шока.

К особенностям терапии септического шока следует отнести внутривенное (иногда используется селективная внутриартериальная инфузия) введение антибиотиков резерва. В ряде случаев используется плазмофильтрация или гемосорбция - как активные методы детоксикации, выводящие из организма большое количество токсинов и промежуточных продуктов жизнедеятельности микроорганизмов, а также заменное переливание крови, УФО- и лазерное облучение крови.

Гиповолемический шок у детей

Характерной чертой любой формы шока является системная гипоперфузия тканей с критическим падением транспорта кислорода и питательных веществ. Тканевая гипоксия и ацидоз изменяют клеточный метаболизм и приводят к нарушению функции практически всех органов, запуская многочисленные "порочные круги", усугубляющие катастрофу.

Своеобразие течения шока у новорожденных определяется множеством особенностей, среди которых следует выделить морфо-функциональную незрелость органов и систем, ограниченные компенсаторные возможности и наличие открытых фетальных коммуникаций (овального окна и артериального протока). В частности, в ответ на гипоксию и ацидоз резко увеличивается тонус легочных артериол и повышается давление в малом круге кровообращения. Легочная гипертензия в сочетании с открытым широким артериальным протоком приводит к гипоперфузии легких и шунтированию крови справа-налево, что еще больше усиливает гипоксемию.

Причины гиповолемического шока

Гиповолемический шок у новорожденных чаще всего развивается в результате острой кровопотери при отслойке и предлежании плаценты, разрыве пупочных сосудов и внутренних органов, массивных внутричерепных кровоизлияниях и др.

Симптомы гиповолемического шока

Клиническая картина гиповолемического шока характеризуется такими симптомами: бледностью и "мраморным рисунком" кожных покровов, симптомом "белого пятна", холодными конечностями и, нередко, общей гипотермией. Периферический пульс резко учащен и ослаблен. Системное АД при этом виде шока может быть сниженным или оставаться в пределах нормальных значений из-за увеличения ОПСС и централизации кровообращения. Диурез снижен (обычно

Помощь при гиповолемическом шоке

Ребенок в состоянии шока должен быть помещен в кювез или под источник лучистого тепла для создания оптимального температурного режима. Необходимо наладить мониторный контроль таких показателей, как ЧСС, АД, SaO2 . Обязательно должен контролироваться почасовой диурез.

Состояние шока у ребенка является показанием к интубации трахеи и переходу к ИВЛ.

Для восполнения ОЦК, в качестве стартового раствора предпочтительнее использовать плазму или альбумин. Допустимо введение и кристаллоидных растворов. Обычно для восполнения ОЦК требуется от 15 до 30 мл/кг массы тела. С помощью инфузионной терапии решаются также проблемы устранения метаболического ацидоза, гипогликемии и электролитных нарушений, без чего невозможна нормализация сократительной способности миокарда. При необходимости инотропная поддержка осуществляется введением допамина в дозе 5-10 мкг/кг/мин.

Неотложная помощь при гиповолемическом шоке

Возникает при снижении ОЦК в результате кровотечения, потери плазмы (в частности, при ожогах), потерях электролитов, различных формах дегидратации и др. У взрослых снижение ОЦК на 25% достаточно эффективно компенсируется организмом путем региональной вазоконстрикции и перераспределением кровотока. У детей эти резервы значительно ниже и кровопотеря 10% ОЦК может привести к развитию необратимых изменений. Адекватное и раннее замещение потерянного объема крови или плазмы надежно предупреждает развитие шока. На ранних стадиях гиповолемического шока происходит компенсация кровопотери путем мобилизации значительного объема крови из кожных, мышечных и сосудов подкожной жировой клетчатки для поддержания сердечного, мозгового, почечного и печеночного кровотока. Кожа становится бледной и холодной, может отмечаться потливость. Кровенаполнение шейных сосудов уменьшается. При продолжении потери ОЦК страдает сердечная деятельность (тахикардия с слабым пульсом, постепенное снижение артериального давления, снижение пульсового давления и рост периферического сопротивления), снижается диурез, отмечается изменение сознания пациента с сменой возбуждения на сомнолентность и заторможенность, учащается дыхание. При отсутствии лечения состояние ребенка прогрессивно ухудшается, артериальное давление падает до критических значений, наблюдается угнетение сознания, пульс становится аритмичным и редким, возможна остановка сердца и дыхания.

Анафилактический шок у детей

Причины анафилактического шока

У ребенка анафилактический шок развивается очень быстро, в ряде случает практически сразу после поступления аллергена в организм и проявляется специфической аллергической реакцией с выраженным нарушением функции ЦНС, кровообращения и дыхания. Первым этапом в развитии анафилактического шока является иммунологическая реакция между аллергеном и антителом при которой высвобождаются вазоактивные амины (гистамин, серотонин, брадикинин, ацетилхолин и др. Эти вещества действуют главным образом на гладкую мускулатуру сосудов, бронхов и кишечника, приводя к выраженной сосудистой недостаточности. Тяжесть течения анафилактического шока определяется промежутком времени от момента поступления антигена в организм. Так, если с момента поступления антигена в организм до начала реакции проходит 2-3 минуты - развивается молниеносная форма АШ, а при тяжелой форме светлый промежуток может продолжаться до 10 минут.

Симптомы анафилактического шока

Молниеносная форма АШ клинически проявляется симптомами острой сердечно-сосудистой недостаточности (отсутствие сознания, зрачки широкие без реакции на свет, резкая бледность кожи с цианозом губ и слизистых, пульс нитевидный, периодически исчезающий под пальцами, аритмия дыхания). Известно, что анафилактические реакции проявляются обычно ларингоспазмом, бронхоспазмом и артериальной гипотензией, которая и является определяющим фактором в развитии шока. В этой ситуации шок развивается также как и при острой гиповолемии.

Предвестниками шока может быть появление кожной сыпи, локальных отеков (Квинке) губ, век, языка, подъем температуры тела и озноб. Кроме традиционного использования в лечении адреналина, стероидных препаратов и антигистаминных средств, необходимо проводить инфузионную терапию, а в ряде случаев и интубацию трахеи.

Оказание помощи при анафилактическом шоке

При анафилактическом шоке следует помнить, что патогенетическое лечение начинается с введения адреналина (антагониста медиаторов анафилаксии). Применение кортикостероидов в терапии шока является до сих пор предметом дискуссий. Механизм влияния стероидных гормонов на развитие септического шока связан, по-видимому, со способностью гормонов ингибировать комплементобусловленную активацию полиморфных нуклеоцитов. Если учесть, что активация полиморфно-ядерных клеток является одним из центральных феноменов септического шока, определяющим возникновение и развитие синдрома капиллярного просачивания в легких и, следовательно, в значительной степени обусловливающим патогенез острой дыхательной недостаточности, то становится очевидным большое значение стероидной терапии в лечении шоковых состояний. Массивные дозы стероидных гормонов значительно снижают выраженность ОДН. Стала очевидной зависимость успеха стероидной терапии от времени ее начала: чем раньше начато применение стероидных гормонов, тем менее выражены симптомы ОДН.

Нейрогенный шок у детей

Симптомы нейрогенного шока

Нейрогенный шок обычно является следствием снижения вазомоторного тонуса, которое в свою очередь развивается в результате потери симпатической иннервации. Этот вариант шока возникает в результате различных повреждений структур ЦНС, наиболее часто - как результат спинальной травмы. Спинальный шок может возникнуть также у больных, которым выполняется высокая спинномозговая анестезия. В ряде случаев он возникает вторично вследствие острого расширения желудка. Хотя патогенетически спинальный шок, как и все другие формы шоковых состояний, развивается в результате неадекватного сердечного выброса и, следовательно, характеризуется снижением перфузии периферических тканей, его клиническая картина существенно отличается от клинических проявлений других шоковых состояний. В ряде случаев могут иметь место тахикардия и гипотензия, однако наиболее часто отмечаются достаточно редкий пульс и весьма умеренная гипотензия. Кожа, как правило, сухая и теплая, сознание сохранено, дыхательная функция не нарушена, шейные вены спавшиеся. В ряде случаев бывает вполне достаточно поднять обе нижние конечности выше оси тела больного, находящегося в горизонтальном положении, чтобы все симптомы нейрогенного шока были купированы. Наиболее эффективен этот прием при гипотонии, вызванной высокой эпидуральной или спинномозговой анестезией. При нейрогенном шоке, вызванном травмой спинного мозга, как правило, возникает необходимость увеличить ОЦК инфузией какого-либо плазмозаменителя и ввести внутривенно вазоконстрикторный препарат (адреналин, норадреналин) для поддержания сосудистого тонуса.

Помощь при нейрогенном шоке

Вне зависимости от причины развития шока терапия в общем схожа и имеет лишь некоторые нюансы. С позиции патофизиологии шоковые состояния целесообразно разделить на две категории:

Со сниженным сердечным выбросом и нарушенной общей периферической тканевой перфузией;

С нормальным или повышенным сердечным выбросом и нарушенным распределением периферического кровотока. Различить эти группы можно в случае устранения гиповолемии и обеспечения адекватной преднагрузки.

Интенсивная терапия при шоке должна быть направлена на:

  • Восстановление ОЦК;
  • Восстановление и стабилизацию артериального давления;
  • Улучшение микроциркуляции;
  • Уменьшение рефлекторной импульсации, с;вязанной с травмой;
  • Улучшение газообмена;
  • Ликвидацию ацидоза и метаболических расстройств;

Первостепенная задача терапии шока - восстановление ОЦК. Проводится пункция вены и установка венозного катетера для начала инфузионной терапии, а в ряде случаев катетеризируются несколько вен. Это позволяет увеличить скорость инфузии. При высокой скорости инфузионной терапии (10-15 мл/кг/час) необходимо строго следить за величиной ЦВД. Скорость инфузии следует уменьшить сразу после определения положительной величины ЦВД и начале ее роста. Для инфузионных сред в терапии шока используются растворы кристаллоидов (раствор Рингера, 5-10% растворы глюкозы, лактасол, дисоль, ацесоль и др.), коллоидные плазмозаменители (производные декстранов, крахмала, желатины), препараты крови (альбумин 5 и 10% раствор, свежая кровь, плазма). В большинстве случаев стартовыми растворами для терапии шока являются коллоидные препараты и альбумин. Никакая медикаментозная терапия не заменит восполнения необходимого количества жидкости! Задачами внутривенной терапии являются возмещение дефицита ОЦК, увеличение преднагрузки и СВ. Необходимость в инфузионной терапии возникает обычно при явном геморрагическом шоке и шоке, связанном с уменьшением объема внесосудистой жидкости и солей. Обычно быстро проведенное лечение устраняет явления геморрагического шока и улучшает общий прогноз заболевания. В ряде случаев своевременно начатая инфузионная терапия облегчает возможность контроля коагулопатических осложнений и даже позволяет избежать гемотрансфузии.

Гемодинамические проявления снижения ОЦК включают тахикардию, гипотензию, снижение системного венозного давления, периферическую вазоконстрикцию, снижение давления наполнения левого желудочка и связанное с этим снижение СВ. Своевременная инфузионная терапия быстро нивелирует эти проявления, однако при задержке лечения может осложниться развитием необратимости шока, которая в подобных случаях проявляется упорной гипотензией, не корригируемой даже с помощью гемотрансфузии.

Выбор инфузионной среды

Чрезвычайно важно при лечении шока выбрать соответствующую инфузионную среду. Принципиально это может быть кровь (хотя и не в первую очередь), коллоидные или кристаллоидные растворы. Известно, что выбор инфузионной среды зависит от многих факторов. Главными из них являются патофизиологические обстоятельства шока и фаза его развития. При потере воды, сопровождающейся гемоконцентрацией, показана инфузия гипотонических солевых растворов. При сопутствующей потере Nа+ коррекцию гиповолемии осуществляют с использованием изотонического раствора хлорида натрия, раствора Рингера и других распространенных солевых растворов. При шоке лактатный раствор Рингера предпочтительнее, поскольку входящий в его состав лактат, метаболизируясь с образованием НСО3- и воды, способен действовать как буфер. Однако у больных в септическом шоке из-за поражения функции печени метаболизм лактата существенно замедлен. Больным с гиповолемией необходимо ввести первоначально до 0.5-1.0 объема ОЦК кристаллоидных растворов, прежде чем удается добиться, улучшения показателей артериального давления, пульса и диуреза. Если такая инфузионная терапия не дает эффекта и корригировать гемодинамическую несостоятельность не удается, особенно если продолжается кровопотеря, обязательно переливание крови с последующим дополнительным переливанием кристаллоидных растворов. Имеются достаточно веские аргументы в пользу коллоидных и кристаллоидных растворов в терапии шока. Тем не менее, вряд ли есть сейчас основания принимать какую-либо точку зрения по вопросу о выборе средства для замещения дефицита объема плазмы как единственную, которой можно руководствоваться в клинической практике. Опасность инфузии коллоидных растворов при выраженном синдроме капиллярного просачивания слишком реальна и очевидна. Отек легких, формирующийся в подобных ситуациях, обычно представляет собой главный и наиболее трудно поддающийся коррекции компонент синдрома дыхательных расстройств.

По кислородно-транспортным свойствам коллоидные растворы не имеют преимуществ перед кристаллоидами. Это дополнительный аргумент для того, чтобы воздержаться от излишней инфузии коллоидных растворов при шоке. Учитывая современную информацию относительно опасности коллоидных растворов при лечении шока, следует все же подчеркнуть, что с клинических позиций можно определить ряд шоковых состояний, когда без использования коллоидных растворов обойтись невозможно. При этом надо помнить, что у больных с полиорганной недостаточностью, особенно при синдроме дыхательных расстройств взрослых (СДРВ), когда выражен синдром капиллярного просачивания, практически все виды инфузионных сред становятся опасными, а патофизиологические последствия их - непредсказуемыми. Другое дело, что обойтись без инфузионной терапии в подобных случаях принципиально не представляется возможным, поскольку нет других средств, которые могли бы обеспечить удовлетворительное кровообращение и поддержание адекватного кислородного баланса в организме. Задачей врача в подобных ситуациях является поиск такого жидкостного баланса, при котором удалось бы устранить гиповолемию с наименьшей опасностью для оксигенирующей функции легких.

Средства лечения шока у детей

Если не возникает необходимость коррекции дефицита ОЦК или дополнительного введения плазменных коагуляционных факторов, то средством выбора для лечения гиповолемии является концентрированный раствор альбумина. Он особенно полезен при лечении больных с хронической гипопротеинемией - больных с заболеваниями печени и почек. Однако относительно высокая стоимость препарата существенно ограничивает его применение. Очищенный препарат альбумина достаточно безопасен в отношении возможности заражения вирусом гепатита, по крайней мере, всегда свободен от австралийского антигена (HBSAg).

Требования к идеальному плазмозамещающему раствору должны определяться следующими условиями:

  • возможностью поддержания онкотического давления плазмы близким к норме;
  • длительным его присутствием в плазме, во всяком случае до момента ликвидации симптомов шока и гиповолемии;
  • своевременной метаболической деградацией препарата или безвредной его экскрецией;
  • низкой анафилактогенностью;
  • низкой стоимостью.

С этих позиций растворы желатины, декстранов и гидроксиэтилкрахмала вполне удовлетворяют существующим требованиям и могут быть рекомендованы (с известными ограничениями) для восстановления дефицита объема плазмы. К сожалению, эти препараты, так же как препараты альбумина или плазмы, переносят только физически растворенный О2 и могут улучшать или поддерживать адекватный кислородный баланс лишь косвенно, через улучшение общего кровообращения.

Судя по экспериментальным данным использования 7.5% раствора хлористого натрия, существенного прироста объема плазмы при этом не бывает, т. е. не происходит ожидаемого перемещения интерстициальной жидкости в сосудистое пространство. Это понятно с точки зрения физических законов, управляющих процессами перемещения жидкости между средами, ибо при этом не изменяется сколько-нибудь длительно КОД, являющийся главным оппозитом гидростатических сил. Однако гиперосмотические растворы могут быть полезны, поскольку способствуют снижению выраженности интерстициального отека миокарда, уменьшают субэндокардиальную ишемию и, следовательно, могут улучшать насосную функцию сердца. Наконец, гиперосмотические гликозилированные растворы способствуют поддержанию метаболизма миокарда. Несмотря на перечисленные положительные стороны, гипертонические растворы (в том числе глюкозо-калиево-инсулиновый раствор - так называемый поляризующий) не являются альтернативой классическим методам возмещения дефицита объема плазмы.

Кардиогенный шок у детей

Причины кардиогенного шока

Наиболее частой причиной развития кардиогенного шока у новорожденных является постгипоксическая дисфункция миокарда. Среди других причин, приводящих к застойной сердечной недостаточности, следует отметить врожденные пороки сердца и сосудов, синдромы утечки воздуха из легких, пароксизмальную тахикардию, обструкцию верхних дыхательных путей.

Симптомы кардиогенного шока

В клинической картине кардиогенного шока наряду с симптомами уменьшения кровотока в большом круге, такими как артериальная гипотензия, тахикардия, периферическая гипоперфузия, падение диуреза, также отмечаются симптомы развития отека легких, кардиомегалии и гепатомегалии.

Помощь при кардиогенном шоке

Заключается в обеспечении ребенку нейтрального температурного режима, коррекции ацидоза, гипогликемии и электролитных нарушений. Искусственная вентиляция легких в сочетании с применением седативных препаратов должна обеспечивать уменьшение потребления кислорода и поддержание PaO2 на уровне 80-100 мм рт. ст. Инфузионную терапию следует проводить с большой осторожностью, под контролем жидкостного баланса. Обычно объем вводимой жидкости сокращают до 80% от физиологической потребности.

Для повышения сократительной способности миокарда назначают допамин, добутамин или сердечные гликозиды. При наличии симптомов выраженной легочной гипертензии добиваются алкалоза (рН - 7,5) с помощью гипервентиляции и введения 4% раствора гидрокарботана натрия и назначают периферические вазодилататоры (нитропруссид натрия в дозе 1,0-5,0 мкг/кг/мин или 8% раствор сульфата магнезии - 200 мг/кг).

Показания к переливанию крови

Гемотрансфузионная терапия

Показания к переливанию крови у больных в состоянии шока возникают, прежде всего, при развившемся остром дефиците концентрации кислородтранспортной субстанции - гемоглобина и эритроцитов. Из-за многочисленных физиологических функций, которые несет кровь, переоценить значение переливания ее для больного в состоянии шока просто невозможно. Помимо улучшения процессов переноса кислорода, донорская кровь обеспечивает организм (хотя и частично) недостающими при шоке факторами коагуляции.

Если концентрировать внимание на кислородтранспортной проблеме, то необходимо подчеркнуть важность своевременной, иногда ранней гемотрансфузии при шоке, предупреждающей развитие сложных патофизиологических явлений, связанных с возникающей в результате кровопотери гипоксией. В ряде случаев эти изменения со временем становятся необратимыми. Таким образом, поддержание уровня гемоглобина, близкого к норме, становится одной из важнейших проблем выведения больного из шока.

Еще несколько лет назад в трансфузиологии господствовала точка зрения, согласно которой у больных в состоянии геморрагического шока имеет преимущество переливание цельной крови. Каких-либо значительных научных обоснований подобной точки зрения не было: она сложилась по сути стихийно и, возможно, потому, что на первых этапах развития трансфузиологии медицина не располагала адекватными и массовыми методами сепарации крови. Следует подчеркнуть, что видимых отрицательных свойств метод переливания цельной крови не имеет. Однако если судить с позиций патофизиологии, в подавляющем большинстве случаев не имеется также основания для непременного переливания цельной крови. У больного с массивной кровопотерей дефицит эритроцитов может быть успешно возмещен отмытыми донорскими эритроцитами, а поддержание ОЦК достигнуто инфузией кристаллоидных растворов. При полном учете всех компонентов транспорта кислорода, соответствующей квалифицированной оценке адекватности кровообращения и гемического компонента терапия кровопотери и шока с использованием компонентов крови имеет явные преимущества, поскольку предусматривает управляемость этого процесса. При современной технике, позволяющей получать из крови множество различных компонентов, к применению которых имеются строго определенные показания, использование цельной крови стало нецелесообразным. Плазменные компоненты крови, а также глобулярные компоненты, отделенные от эритроцитов, могут быть использованы, например, для лечения расстройств коагуляции или при дефиците тромбоцитов.

Целесообразно рассмотреть ряд специфических проблем, связанных с качеством крови как среды для транспорта кислорода. В ряде случаев, когда кровопотеря массивная, длительная и достигает величин, угрожающих жизни больного, и когда увеличение ОЦК инфузией солевых или коллоидных растворов становится недостаточным для поддержания уровня кислорода в крови и тканях, возникает острая необходимость дополнить лечение переливанием эритроцитов.

В повседневной клинической практике нередко приходится использовать для этого донорскую кровь длительных сроков хранения. Это кровь, заготовленная 5-10 дней назад и хранившаяся в холодильнике по существующим правилам. В силу продолжающихся, хотя и замедленных холодом, метаболических процессов эритроциты подобной крови имеют в значительной степени обедненный углеводный пул. Содержание 2,3-ДФГ и АТФ снижается в несколько раз. В результате кислородосвязывающая функция таких эритроцитов меняется: они становятся способными активно связывать О2, но процесс отщепления кислорода в тканях нарушается. Описанное явление определяется в научной литературе как смещение кривой диссоциации оксигемоглобина влево. В клинической практике это явление обычно не учитывается; между тем его значение для организма чрезвычайно велико. Поскольку "старая" кровь обычно хорошо насыщается кислородом, создается иллюзия полного кислородтранспортного благополучия. Ошибочному представлению о благополучии способствует также то, что в подобных ситуациях смешанная венозная кровь имеет высокое насыщение, что по всем физиологическим канонам свидетельствует об удовлетворительном балансе кислорода на уровне тканей. Однако это не так, поскольку высокое сродство гемоглобина к кислороду в таких случаях задерживает естественный процесс десатурации и возникает тканевая гипоксия. Иными словами, потребление О2 тканями перестает соответствовать их потребностям в кислороде. Метаболическим проявлением подобной ситуации служит нарастающий лактат-ацидоз, который по сути является результатом гипоксии. Однако диагностические трудности связаны с необходимостью дифференцировать гемический лактат-ацидоз от описанного выше гипоциркуляторного, столь характерного для шоковых состояний.

Естественный процесс "омоложения" перелитой крови происходит обычно не ранее чем через 24 ч. Все это время организм продолжает жить в условиях гипоксии, которая может не иметь прямого выражения в показателях КОС и газов крови. Процессы компенсации подобного состояния включают непременное усиление циркуляторной активности. Физиологическое значение описанного явления остается не до конца ясным. По-видимому, есть основания считать, что физиологические факторы (МОС, метаболизм, КОС, оксигенация крови в легких и др.), поскольку они способны компенсировать нарушение жизнедеятельности организма, могут смягчать неблагоприятные последствия описанного явления.

В настоящее время все больше применяют новейшие способы консервации крови и ее "омоложения" в процессе хранения, позволяющие в значительной степени сохранить энергетический ресурс эритроцита и тем самым обеспечить неизменность его физиологических функций, главной из которых является перенос кислорода.

Обеспечение оптимальной преднагрузки и постнагрузки

Важнейшей лечебной проблемой при шоке является поддержание нормальной преднагрузки сердца. Оптимальное давление наполнения сердца и диастолический объем являются непременными условиями максимального СВ при данном состоянии миокарда. В условиях шока наполение желудочков существенно меняется.

При нормальном коллоидно-осмотическом давлении и в условиях неповрежденных капилляров легких давление наполнения левого желудочка должно поддерживаться на верхней границе нормы. Во всяком случае оно должно превышать нормальные уровни ЦВД, равного 40-60 мм вод. ст., и легочного капиллярного давления, равного 8-10 мм рт. ст. Только при этих условиях есть гарантия, что преднагрузка вполне адекватна и гиповолемия не является причиной циркуляторной недостаточности

Если при достаточно высоком давлении наполнения левого желудочка КОД плазмы снижается, то имеется опасность жидкостной перегрузки легочной сосудистой системы и, следовательно, появления отека легких. Поражение капиллярных мембран способствует возникновению этой опасности.

Снижение преднагрузки (по сравнению с нормой) практически всегда ведет к уменьшению сердечного выброса и возникновению признаков циркуляторной недостаточности. Снижение преднагрузки левого желудочка с помощью диуретиков или вазодилататоров, а тем более путем кровопускания при шоке недопустимо. Как правило, такая ошибка возникает при лечении больных с отеком легких, который трактуют как проявление левожелудочковой недостаточности.

Таким образом, гиповолемию как причину шока при сопутствующем отеке легких нельзя лечить с использованием диуретиков и сосудорасширяющих средств. При увеличении преднагрузки возрастает потребление О2 миокардом. Однако это не является основанием для снижения преднагрузки при явлениях шока, так как, основным условием ликвидации шока является увеличение сердечного выброса, которое без соответствующего адекватного увеличения преднагрузки невозможно.

Таким образом, оптимизация преднагрузки и приведение ее в соответствие с сократительными возможностями миокарда является основным принципом ведения больного в состоянии шока. Вместе с тем не следует переоценивать значение восполнения дефицита ОЦК.

Поддержание сократительной функции миокарда

Это одна из важнейших проблем лечения шокового состояния. Для стабилизации сосудистого тонуса при шоке используются инотропные препараты с выраженным адреномиметическим эффектом (допамин, адреналин, норадреналин, добутамин), оказывающие влияние на сократительную функцию сердца.

Дозу допамина рассчитывают по эффекту. Препарат вводят внутривенно капельно в изотонических растворах хлорида натрия (0,9%) или глюкозы (5%) в дозе 1-5 мкг/кг/мин. В отсутствие эффекта дозу увеличивают до 10-20 мкг/кг/мин. Малые дозы воздействуют на дофаминергические рецепторы и вызывают повышение почечного и спланхнического кровотока. Этот эффект в основном сходен с эффектом снижения постнагрузки и соответственно сопровождается снижением среднего артериального давления. При использовании больших доз допамина его действие в значительной мере обусловливается непосредственным инотропным влиянием на миокард, а также опосредованно путем освобождения норадреналина. Допамин в определенной степени повышает потребность миокарда в кислороде.

В настоящее время широко применяют и добутамин, молекулы которого представляют собой модифицированную химическую структуру изопреналина. Препарат действует непосредственно на 1-рецепторы и, следовательно, дает непосредственный инотропный эффект, усиливая сократительную способность миокарда. Повышая СВ, добутамин снижает среднее артериальное и среднее капиллярное легочное давление. Допамин, наоборот, повышает показатели давления в легочной системе кровообращения.

Норадреналин также увеличивает потребность миокарда в кислороде, однако этот эффект в значительной степени вторичен и обусловлен главным образом усилением сократительной способности миокарда. Кроме того, неблагоприятное повышение потребления кислорода миокардом под влиянием норадреналина уравновешивается улучшением снабжения миокарда кислородом в связи с повышением среднего аортального давления, главным образом диастолического. Устойчивое повышение систолического артериального давления под влиянием норадреналина делает этот препарат одним из наиболее эффективных при плохо купируемой гипотензии.

Инотропные препараты, как правило, не улучшают баланса между потреблением кислорода миокардом и потребностью в нем. Это указывает на необходимость большой осторожности при их применении у больных в состоянии шока.

В ряде случаев меры по оптимизации преднагрузки и улучшению сократимости миокарда не дают результата. Чаще это бывает при рефрактерных формах шока, граничащих с состоянием необратимости. Обычно выявляется наклонность к отеку легких, и возникают расстройства периферического кровообращения в виде повышения периферической вазоконстрикции. В подобных случаях необходимо воздействовать медикаментозными средствами на периферическое сосудистое сопротивление, т. е. на постнагрузку. Снижение периферического сопротивления позволяет увеличить степень укорочения мышечных волокон левого желудочка и увеличить фракцию выброса левого желудочка. По мере стабилизации артериального давления возникает необходимость улучшения тканевой перфузии, улучшения периферического кровообращения. Не следует спешить с использованием вазодилататоров, вначале необходимо изменить дозы инотропных препаратов (допамин в допамин-эргических дозах, сочетание с добутамином в дозе от 2 до 5 мкг/кг/мин).

Миокард новорожденного имеет некоторые важные отличия от миокарда взрослого. К ним относятся:
- меньшее число сократительных элементов (30% по сравнению с 60% у взрослых);
- меньшая податливость;
- ограниченный ударный объем;
- зависимость сердечного выброса от ЧСС;
- высокая потребность в кислороде;
- низкий функциональный резерв;
- чувствительность к препаратам, блокирующим кальциевые каналы (например, к ингаляционным анестетикам).

Важнейшая электрокардиографическая особенность - выраженное отклонение электрической оси сердца вправо (+180°); нормального положения (+90°) электрическая ось сердца достигает к возрасту 6 мес.

Сердечный выброс у новорожденного составляет от 300 до 400 мл/кг/мин и поровну распределяется между желудочками. Выброс левого желудочка после рождения возрастает вдвое, что сильно снижает функциональный резерв сердца. К 4 мес сердечный выброс снижается до 200 мл/кг/мин, и функциональный резерв сердца возрастает.

Миокард новорожденного сокращается гораздо слабее, чем миокард взрослого, и характеризуется меньшей податливостью. Отчасти это обусловлено тем, что в миокарде новорожденного меньше сократительных элементов. К тому же миофибриллы и саркоплазмати-ческий ретикулум кардиомиоцитов незрелые, и входящий ток Са2+ слабее, чем у взрослого.

Последняя особенность , вероятно, служит причиной повышенной чувствительности миокарда новорожденных к препаратам, блокирующим кальциевые каналы, в том числе галотану и изофлурану. Вследствие указанных особенностей у новорожденных ограничен ударный объем, и сердечный выброс может повышаться практически только за счет увеличения ЧСС. Брадикардия ведет к выраженному снижению сердечного выброса и переносится плохо.

Из-за высокой потребности в кислороде у новорожденных может быстро развиться гипоксемия. В ответ на гипоксию возникают следующие изменения:
- брадикардия;
- снижение ОПСС;
- повышение ЛСС;
- угроза переходного кровообращения.

Объем циркулирующей крови (ОЦК) новорожденных

ОЦК новорожденных составляет приблизительно 80 мл/кг, у недоношенных - 90-95 мл/кг. В раннем постнатальном периоде колебания ОЦК могут составлять 20% в зависимости от объема материнско-фетальной и фето-материнской трансфузий. Причиной гиповолемии у новорожденного может быть тяжелая внутриутробная гипоксия с вазоконстрикцией и со снижением ОЦК.

Надежным показателем ОЦК служит систолическое АД. Компенсаторные реакции на кровопотерю у новорожденных довольно слабые, вероятно, вследствие незрелости барорефлексов в сочетании с малой емкостью сосудистого русла и ограниченным сердечным выбросом.

Уровень гемоглобина при рождении составляет 17 г%; в течение последующих 4-8 нед он снижается до 11 г%, а у недоношенных еще ниже. Физиологическая анемия обусловлена уменьшением эритропоэза вследствие улучшения оксигенации тканей после рождения и укорочением срока жизни эритроцитов.

Основную массу гемоглобина новорожденного составляет фетальный гемоглобин; он обладает большим сродством к кислороду, но и отдает кислород хуже: Р50 (Ра02, при котором оксигемоглобин диссоциирует на 50%) для фетального гемоглобина составляет 2,7 кПа, для гемоглобина взрослых - 3,6 кПа. Высокое сродство фетального гемоглобина к кислороду компенсируется более выраженными ацидозом, гиперкапнией и гипоксией в тканях, вследствие чего кривая диссоциации оксигемоглобина сдвигается вправо. К 3 мес фетальный гемоглобин практически полностью замещается гемоглобином взрослых.

Кровь является субстанцией кровообращения, поэтому оценка эффективности последнего должна быть начата с оценки объема крови в организме. Общий объем циркулирующей крови (ОЦК)


можно условно разделить на часть, активно циркулирующую по сосудам, и часть, которая не участвует в данный момент в крово­обращении, т. е. депонированную (которая, однако, может при определенных условиях включиться в кровообращение). В настоя­щее время признается существование так называемого объема быстро циркулирующей крови и объема медленно циркулирующей крови. Последний и является объемом депонированной крови.

Наибольшая часть крови (73-75% всего объема) находится в венозном отделе сосудистой системы, в так называемой системе низкого давления. Артериальный отдел - система высокого давле­ния _ содержит 20% ОЦК; наконец, в капиллярном отделе имеет­ся лишь 5-7% общего объема крови. Из этого следует, что даже небольшая внезапная кровопотеря из артериального русла, напри­мер 200-300 мл, существенно уменьшает объем крови, нахо­дящейся в артериальном русле, и может повлиять на условия гемо­динамики, тогда как такая же по объему кровопотеря из венозного отдела сосудистой емкости практически не отражается на гемоди­намике.

На уровне капиллярной сети происходит процесс обмена элек­тролитов и жидкостной части крови между внутрисосудистым и внесосудистым пространством. Поэтому потеря объема цирку­лирующей крови, с одной стороны, отражается на интенсивности течения этих процессов, с другой - именно обмен жидкости и элект­ролитов на уровне капиллярной сети может быть тем адаптационным механизмом, который в известной степени способен корригировать остро возникающий дефицит крови. Эта коррекция происходит путем перехода определенного количества жидкости и электроли­тов из внесосудистого сектора в сосудистый.

У различных субъектов в зависимости от пола, возраста, тело­сложения, условий жизни, степени физического развития и тре­нированности объем крови колеблется и составляет в среднем 50- 80 мл/кг.



Уменьшение или увеличение ОЦК у нормоволемического субъекта на 5-10% обычно полностью компенсируется изменением емкости венозного русла без изменений центрального венозного давления. Более значительное увеличение ОЦК обычно сопряжено с увеличени­ем венозного возврата и при сохранении эффективной сократимости сердца приводит к увеличению сердечного выброса.

Объем крови складывается из общего объема эритроцитов и объ­ема плазмы. Циркулирующая кровь неравномерно распределяется





в организме. Сосуды малого круга содержат 20-25% объема кро­ви. Значительная часть крови (10-15%) аккумулируется органа­ми брюшной полости (включая печень и селезенку). После приема пищи сосуды гепато-дигестивной области могут содержать в себе 20-25% ОЦК. Подсосочковый слой кожи при определенных ус­ловиях, например, при температурной гиперемии вмещает до 1 л крови. Гравитационные силы (в спортивной акробатике, гимнасти­ке, у космонавтов и др.) также оказывают существенное влияние на распределение ОЦК. Переход из горизонтального в вертикаль­ное положение у здорового взрослого человека приводит к накоп­лению в венах нижних конечностей до 500-1000 мл крови.

Хотя известны средние нормы ОЦК для нормального здорового человека, эта величина у различных людей весьма вариабельна и зависит от возраста, массы тела, условий жизни, степени трени­рованности и т. д. Если установить здоровому человеку постельный режим, т. е. создать условия гиподинамии, то через 1,5-2 недели общий объем его крови снизится на 9-15% от исходного. Усло­вия жизни различны у обычного здорового человека, у спортсме­нов и у людей, занимающихся физическим трудом, а они влияют на величину ОЦК. Показано, что у больного, находящегося на по­стельном режиме в течение длительного периода, может произой­ти снижение ОЦК на 35-40%.

При снижении ОЦК отмечается: тахикардия, артериальная ги­потония, снижение центрального венозного давления, мышечного тонуса, атрофия мышц и т. д.

В основу методов измерения объема крови в настоящее время положен непрямой способ, основанный на принципе разведения.

1. Морфофизиологические особенности системы крови у детей и подростков

Объем крови. Абсолютный объем крови с возрастом увеличивается: у новорожденных он составляет 0,5 л, у взрослых – 4–6 л. Относительно массы тела объем крови с возрастом, наоборот, снижается: у новорожденных – 150 мл/кг массы тела, в 1 год – 110, в 6 лет, 12–16 лет – 70 мл/кг массы тела.

Объем циркулирующей крови (ОЦК). В отличие от взрослых у детей почти вся кровь циркулирует, т.е. ОЦК приближается к объему крови. Например, ОЦК у 7–12 летних детей составляет 70 мл/кг массы.

Гематокритное число . У новорожденных доля форменных элементов составляет 57% от общего объема крови, в 1 месяц – 45%, в 1–3 года – 35%, в 5 лет – 37%, в 11 лет – 39%, в 16 лет – 42–47%.

Число эритроцитов в 1 л. крови. У новорожденного составляет 5,8; в 1 месяц – 4,7; с 1 года до 15 лет – 4,6, а в 16–18 лет достигает значений, характерных для взрослых.

Средний диаметр эритроцита (мкм). У новорожденных – 8,12; в 1 месяц – 7,83; в 1 год – 7,35; в 3 года – 7,30; в 5 лет – 7,30; в 10 лет – 7,36; в 14–17 лет – 7,50.

Продолжительность жизни эритроцита . У новорожденных она составляет 12 дней, на 10-м дне жизни – 36 дней, а в год, как и у взрослых – 120 дней.

Осмотическая устойчивость эритроцитов . У новорожденных минимальная резистентность эритроцитов ниже, чем у взрослых (0,48–0,52% раствор NaCI против 0,44–0,48%); однако уже к 1 месяцу она становится такой же, как у взрослых.

Гемоглобин . У новорожденных его уровень составляет 215 г./л, в 1 месяц – 145, в 1 год – 116, в 3 года – 120, в 5 лет – 127, в 7 лет – 127, в 10 лет – 130, в 14–17 лет – 140–160 г./л. замена фетального гемоглобина (HbF) на гемоглобин взрослого (HbA) происходит к 3 годам.

Цветной показатель . У новорожденного он составляет 1,2; в 1 месяц – 0,85; в 1 год – 0,80; в 3 года – 0,85; в 5 лет – 0,95; в 10 лет – 0,95; в 14–17 лет – 0,85–1,0.

Скорость оседания эритроцитов (СОЭ). У новорожденных она равна 2,5 мм/час, в 1 месяц – 5,0; в 1 год и старше – 7,0–10 мм/час.

Лейкоциты. В 1 литре крови у новорожденного – 30 х 10 9 лейкоцитов, в 1 месяц – 12,1 х 10 9 , в 1 год – 10,5 х 10 9 , в 3–10 лет – 8–10 х 10 9 , в 14–17 лет – 5–8 х 10 9 . Таким образом, имеет место постепенное снижение эритроцитов.

Лейкоцитарная формула. Она имеет возрастные особенности, связанные с содержанием нейтрофилов и лимфоцитов. У новорожденных, как и у взрослых, на долю нейтрофилов приходится 68%, а на долю лимфоцитов – 25%; на 5–6 день после рождения возникает так называемый «первый перекрест» – нейтрофилов становится меньше (до 45%), а лимфоцитов – больше (до 40%). Такое соотношение сохраняется примерно до 5–6 лет («второй перекрест»). Например, на 2–3 месяц доля нейтрофилов составляет 25–27%, а доля лимфоцитов – 60–63%. Это указывает на существенное повышение интенсивности специфического иммунитета у детей первых 5–6 лет. После 5–6 лет постепенно к 15 годам соотношение, характерное для взрослых, восстанавливается.

Т-лимфоциты . У новорожденных на долю Т-лимфоцитов приходится 33–56% от всех форм лимфоцитов, а у взрослых – 60–70%. Такая ситуация возникает с 2-летнего возраста.

Продукция иммуноглобулинов . Уже внутриутробно плод способен синтезировать

Ig M (12 нед.), Ig G (20 нед.), Ig А (28 нед.). От матери плод получает Ig G. На первом году жизни ребенок продуцирует в основном Ig M и практически не синтезирует Ig G и Ig А. Отсутствие способности продуцировать Ig А объясняет высокую восприимчивость грудных детей к кишечной флоре. Уровень «взрослого» состояния достигается по Ig M в 4–5 лет, по Ig G – в 5–6 лет и по Ig А – в 10–12 лет. В целом низкое содержание иммуноглобулинов в первый год жизни объясняет высокую восприимчивость детей к различным заболеваниям органов дыхания и пищеварения. Исключением является первые три месяца жизни – в этот период имеет место почти полная невосприимчивость к инфекционным заболеваниям, то есть проявляется своеобразная ареактивность.

Показатели неспецифического иммунитета . У новорожденного фагоцитоз есть, но он «некачественный», так как у него отсутствует завершающий этап. Уровень «взрослого» состояния фагоцитоз достигает после 5 лет. У новорожденного лизоцим уже есть в слюне, слезной жидкости, крови, лейкоцитах; причем уровень его активности даже выше, чем у взрослых. Содержание пропердина (активатора комплимента) у новорожденного ниже, чем у взрослых, но уже к 7 дням жизни оно достигает этих значений. Содержание интерферонов в крови новорожденных такое же высокое, как у взрослых, однако в последующие дни оно падает; более низкое, чем у взрослых, содержание наблюдается на протяжении от 1 года до 10–11 лет; с 12–18 лет – оно достигает значений, характерных для взрослых. Система комплемента у новорожденных по своей активности составляет 50% от активности взрослых; к 1 месяцу она становится такой же, как у взрослых. Таким образом, в целом гуморальный неспецифический иммунитет у детей почти такой же, как у взрослых.

Система гемостаза . Число тромбоцитов у детей всех возрастов, включая новорожденных, такое же, как у взрослых (200–400 х 10 9 в 1 л). Несмотря на определенные различия в содержании факторов свертывания крови и антикоагулянтов, в среднем скорость свертывания у детей, включая новорожденных, такая же, как у взрослых (например, по Бюркеру – 5–5,5 мин); аналогично – продолжительность кровотечения (2–4 мин. по Дюке), время рекальцификации плазмы, толерантность плазмы к гепарину. Исключение составляют протромбиновый индекс и протромбиновое время – у новорожденных они ниже, чем у взрослых. способность тромбоцитов к агрегации у новорожденных тоже выражена слабее, чем у взрослых. После года содержание факторов свертывания и антикоагулянтов в крови такое же, как и у взрослых.

Физико-химические свойства крови. В первые дни жизни удельный вес крови больше (1060–1080 г./л), чем у взрослых (1050–1060 г./л), но потом достигает этих значений. Вязкость крови у новорожденного выше вязкости воды в 10–15 раз, а у взрослого – в 5 раз; снижение вязкости до уровня взрослых происходит к 1 месяцу. Для новорожденного характерно наличие метаболического ацидоза (рН 7,13 – 6,23). Однако уже на 3–5 сутки рН достигает значений взрослого человека (рН = 7,35–7,40). Однако на протяжении всего детства снижено количество буферных оснований, то есть имеет место компенсированный ацидоз. Содержание белков крови у новорожденного достигает 51–56 г./л, что значительно ниже, чем у взрослого (70–80 г./л), в 1 год – 65 г./л. уровень «взрослого» состояния наблюдается в 3 года (70 г./л). соотношение отдельных фракций, подобно «взрослому» состоянию, наблюдается с 2–3 летнего возраста (у новорожденных относительно высока доля γ–глобулинов, попавших к ним от матери).

Влияние учебной нагрузки на систему крови

Реакция оседания эритроцитов (СОЭ). У большинства детей первых классов (7–11 лет) сразу после учебной нагрузки СОЭ ускоряется. Ускорение СОЭ наблюдается по преимуществу у детей, исходные величины СОЭ у которых колебались в пределах нормы (до 12 мм/час). У детей, СОЭ которых до учебной нагрузки была повышена, к концу учебного дня наблюдается ее замедление. У части детей (28,2%) СОЭ не изменялось. Таким образом, влияние учебной нагрузки на СОЭ в значительной степени зависит от исходных величин: высокая СОЭ замедляется, замедленная – ускоряется.

Вязкость крови . Характер изменения относительной вязкости крови под влиянием учебной нагрузки зависит также от исходных величин. У детей с низкой исходной вязкостью крови к концу учебного дня наблюдается ее увеличение (в среднем 3,7 – до уроков и 5,0 – после уроков). У тех детей, у которых до занятий вязкость была относительно высокой (в среднем4,4), после занятий она отчетливо уменьшалась (в среднем 3,4). У 50% детей – из числа обследованных вязкость крови увеличилась при падении числа эритроцитов.

Содержание глюкозы в крови . В течение учебного дня в крови детей 8–11 лет происходит изменение содержания глюкозы. При этом наблюдается определенная зависимость направления сдвига от исходной концентрации. У тех детей, у которых исходное содержание глюкозы в крови составляло 96 мг%, после уроков наблюдалось снижение концентрации (до 79 мг% в среднем). У детей с исходной концентрацией глюкозы в крови в среднем до 81 мг% концентрация ее повышалась до 97 мг%

Свертывание крови . Свертывание крови резко ускорялось под влиянием учебной нагрузки у большинства детей 8–11 лет. При этом связи между исходным временем свертывания крови и последующей реакцией не отмечено.

Влияние физической нагрузки на систему крови

Белая кровь . В целом реакция белой крови на мышечную работу у подростков и юношей имеет те же закономерности, что и у взрослых. При работе небольшой мощности (игра, бег) у подростков 14–17 лет наблюдается первая, лимфоцитарная, фаза миогенного лейкоцитоза. При работе с большой мощности (велогонки) – нейтрофильная, или вторая, фаза миогенного лейкоцитоза.

После кратковременной мышечной деятельности (бег, плавание) у юношей и девушек 16–18 лет наблюдается лейкоцитоз за счет увеличения концентрации почти всех форменных элементов белой крови. Однако преобладает при этом увеличение процентного и абсолютного содержания лимфоцитов. Какой-либо разницы в реакции крови юношей и девушек на данные нагрузки не установлено.

Степень выраженности миогенного лейкоцитоза зависит от длительности мышечной работы: с увеличением длительности и мощности работы лейкоцитоз усиливается.

В характере наступающих после мышечной деятельности изменений белой крови каких-либо возрастных отличий не установлено. Не установлено существенных различий и при изучении периода восстановления картины белой крови у юных (16–18 лет) и взрослых (23–27 лет) лиц. У тех и других через полтора часа после интенсивной работы (50 км велогонки) отмечаются признаки миогенного лейкоцитоза. Нормализация картины крови, то есть восстановление до исходных величин, происходила через 24 часа после работы. Одновременно с лейкоцитозом отмечается усиленный лейкоцитоз. Максимальный лизис белых кровяных телец наблюдался через 3 часа после работы. При этом у юношей интенсивность лейкоцитолиза несколько выше, чем у взрослых лиц.

Красная кровь . При кратковременных мышечных напряжениях (бег, плавание) количество гемоглобина у юношей и девушек 16–18 лет изменяется незначительно. Количество эритроцитов в большинстве случаев немного увеличивается (максимально на 8–13%).

После интенсивной длительности мышечной деятельности (велогонки на 50 км) количество гемоглобина в большинстве случаев также практически не изменяется. Общее число эритроцитов при этом уменьшается (в пределах от 220 000 до 1 100 000 на мм 3 крови). Через полтора часа после велогонки процесс эритроцитолиза усиливается. Через 24 часа количество эритроцитов еще не достигает исходного уровня. Отчетливо выраженный эритроцитолиз в крови юных спортсменов сопровождается увеличением молодых форм эритроцитов – ретикулоцитов. Ретикулоцитоз сохраняется в крови в течение 24 час. после работы.

Тромбоциты . Мышечная деятельность вызывает у лиц всех возрастов четко выраженный тромбоцитоз, который был назван миогенным. Различают 2 фазы миогенного тромбоцитоза. Первая, наступающая обычно при кратковременной мышечной деятельности, выражается в увеличении числа кровяных пластинок без сдвига в тромбоцитограмме. Эта фаза связана с перераспределительными механизмами. Вторая, наступющая обычно при интенсивных и длительных мышечных напряжениях, выражается не только в увеличении числа тромбоцито, но и в сдвиге тромбоцитограммы в сторону юных форм. Возрастные различия заключаются в том, что при одной и той же нагрузке у юношей 16–18 лет наблюдается отчетливо выраженная вторая фаза миогенного тромбоцитоза. При этом у 40% юношей тромбоцитарная картина крови не восстанавливается до исходной спустя 24 часа после работы. У взрослых лиц период восстановления не превышает 24 часа.

Вязкость крови . Относительная вязкость крови у юношей и девушек 16–17 лет существенно не меняется после кратковременной работы. После длительных и интенсивных мышечных напряжений вязкость крови отчетливо увеличивается. Степень изменения вязкости крови зависит от длительности мышечной работы. При работе большой мощности и длительности изменения вязкости крови имеют затяжной характер; восстановление до исходной величины не всегда наступает даже через 24–40 часов после работы.

Свертывание крови. Проявление защитного усиления свертывания крови при мышечной деятельности имеет свое возрастное своеобразие. Так, после одной и той же работы у юношей наблюдается более выраженный тромбоцитоз, чем у взрослых. Время свертывания крови укорачивается в равной степени и у подростков 12–14 лет, и у юношей 16–18 лет, и у взрослых лиц 23–27 лет. Однако период восстановления скорости свертывания до исходной более длителен у подростков и юношей.

2. Гипоталамо-гипофизарная система и ее роль в регуляции деятельности желез внутренней секреции

Гипофиз находится у основания мозга под гипоталамусом. Масса железы колеблется в пределах 0,35–0,65 г. Гипоталамус связан с гипофизом общей системой кровоснабжения. Он регулирует работу гипофиза, а последний прямо или косвенно влияет на работу всех эндокринных желез. Следовательно, связка гипоталамус-гипофиз обеспечивает координацию работы двух систем регуляции – нервной и гуморальной. Благодаря работе этих двух систем в гипоталамус поступает информация со всех отделов организма: сигналы от экстеро- и интерорецепторов идут в центральную нервную систему через гипоталамус и передаются эндокринным органам.

Гипофиз состоит из трех долей – передней, средней и задней. Передняя доля гипофиза вырабатывает несколько гормонов, которые регулируют и координируют работу других эндокринных желез. Два гормона оказывают сильнейшее воздействие на половую систему. Один (окситоцин) усиливает сексуальные функции, а другой (пролактин) способствует росту молочных желез и образованию молока у женщин, но подавляет сексуальную активность. Наиболее известным гормоном передней доли гипофиза является соматропин (СТГ). Он оказывает мощное воздействие на обмен белков, жиров и углеводов, и стимулирует рост тела. При избытке гормона роста (СТГ) в детстве человек вырастает до 250–260 см. если соматропина вырабатывается больше нормы (гиперфункция) у взрослого человека, то разрастаются хрящевые и мягкие ткани лица и конечностей (акромегалия). При гипофункции происходит резкое замедление роста, что приводит к сохранению пропорций детского тела, недоразвитию вторичных половых признаков (гипофизарный карлик). Взрослые карлики не превышают в росте 5–6 летних детей. Средняя доля гипофиза вырабатывает гормон, регулирующий образование пигментов кожи. Задняя доля гормонов вообще не вырабатывает. Здесь накапливаются, хранятся и по мере необходимости выделяются в кровь гормоны, которые синтезируют ядра гипоталамуса. Наиболее известным из этих гормонов является вазопрессин, который регулирует процесс образования мочи. При геперфункции процесс подавляется и выделяется всего 200–250 мл мочи в сутки, но при этом возникают отеки (синдром Пархана). При недостатке гормона (гипофункции) резко увеличивается диурез до 10–40 литров в сутки, но так как моча не содержит глюкозы, заболевание называют несахарным диабетом.

Нейросенсорные клетки гипоталамуса превращают афферентные стимулы в гуморальные факторы с физиологической активностью, которые стимулируют синтез и высвобождение гормонов гипофиза. Гормоны, тормозящие эти процессы, называются ингибирующими гормонами или статинами.

Гипоталамические рилизинг-гормоны влияют на функцию клеток гипофиза, которые вырабатывают ряд гормонов. Последние в свою очередь влияют на синтез и секрецию гормонов периферических эндокринных желез, а те уже на органы или ткани. Все уровни этой системы взаимодействий тесно связаны между собой системой обратной связи.

Важную роль в регуляции функции эндокринных желез играют медиаторы симпатических и парасимпатических нервных волокон.


3. Особенности взаимоотношения населения и среды в условии современного НТР. Проблема здоровья детей

Научно-техническая революция открыла перед человечеством огромные возможности преобразования природной среды и использования природных ресурсов. Однако по мере активизации вмешательств человека в природную среду становится все более очевидным ущерб, наносимый природе и достигающий порой такого уровня, который может угрожать здоровью и благополучию самого человека.

Проблемами взаимодействия человека и среды его обитания занимаются очень многие специалисты разных научных дисциплин, начиная с философских и кончая техническими. Каждая дисциплина видит в этом взаимодействии свой аспект, определяемый ее предметом исследования. Однако в связи с комплексным характером взаимодействия человека и окружающей среды назрела необходимость появления единой дисциплины, которая использовала бы накопленные различными науками знания по этой проблеме и на их основе выработала свои подходы и методы исследования.

В современных условиях интенсивного научно-технического прогресса, характеризующегося глобальными изменениями окружающей природной среды и появлением многих новых физических и химических факторов, загрязняющих природную среду, такой интегрирующей дисциплиной стала экология человека. Ее цель в поддержании и сохранении здоровых биогеоценозов.

В настоящее время хозяйственная деятельность человека все чаще становится основным источником загрязнения биосферы. В природную среду во все больших количествах попадают газообразные, жидкие и твердые отходы производств. Различные химические вещества, находящиеся в отходах, попадая в почву, воздух или воду, переходят по экологическим звеньям из одной цепи в другую, попадая, в конце концов, в организм человека.

Реакции организма на загрязнения зависят от индивидуальных особенностей: возраста, пола, состояния здоровья. Как правило, более уязвимы дети, пожилые и престарелые, больные люди. Медики установили прямую связь между ростом числа людей, болеющих аллергией, бронхиальной астмой, раком, и ухудшением экологической обстановки в данном регионе. Достоверно установлено, что такие отходы производства, как хром, никель, бериллий, асбест, многие ядохимикаты, являются канцерогенами, то есть вызывающие раковые заболевания. Еще в прошлом веке рак у детей был почти неизвестен, а сейчас он встречается все чаще и чаще. В результате загрязнения появляются новые, неизвестные ранее болезни. Причины их бывает очень трудно установить.

Высокоактивные в биологическом отношении химические соединения могут вызвать эффект отдаленного влияния на здоровье человека: хронические воспалительные заболевания различных органов, изменение нервной системы, действие на внутриутробное развитие плода, приводящее к различным отклонениям у новорожденных.

Кроме химических загрязнителей, в природной среде встречаются и биологические, вызывающие у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы, гельминты, простейшие. Они могут находиться в атмосфере, воде, почве, в теле других живых организмов, в том числе и в самом человеке.


Литература

1. Агаджанян Н.А., Телль Л.З., Циркин В.И., Чеснокова С.А. Физиология человека. – М.: Медицинская книга, Н. Новгород: Изд-во НГМА, 2003. – 528 с.

2. Мельниченко Е.В. Возрастная физиология. Хрестоматия для теоретического изучения курса «Возрастная физиология». Часть 1. г. Симферополь, 2003 г.

3. Никифоров Р.А., Попова Г.Н. Биология. Человек. РИЦ «Атлас», 1995 г.

4. НТР, здоровье, здравоохранение/ Под ред. А.Ф. Сергенко, О.А. Александрова. – М.: Медицина, 1984. – 248 с.

5. Федокович Н.И. Анатомия и физиология человека: Учебное пособие. Изд. 5-е. – Ростов н/Д: Изд-во: «Феликс», 2004. – 416 с.

Похожие статьи