Труба Кеплера — макроконвертер и фоторужье в одном флаконе. Телескоп галилея Ход лучей в зрительной трубе кеплера

ОПТИЧЕСКИЕ ПРИБОРЫ С ТЕЛЕСКОПИЧЕСКИМ ХОДОМ ЛУЧЕЙ: ТРУБА КЕПЛЕРА И ТРУБА ГАЛИЛЕЯ

Целью данной работы является изучение устройства двух оптических приборов – трубы Кеплера и трубы Галилея и измерение их увеличений.

Труба Кеплера представляет собой простейшую телескопическую систему. Она состоит из двух положительных (собирающих) линз, установленных так, что попадающий на первую линзу параллельный пучок выходит из второй линзы также параллельным (рис.1).

Линза 1 называется объективом, линза 2 – окуляром. Задний фокус объектива совпадает с передним фокусом окуляра. Такой ход лучей называется телескопическим, а оптическая система будет афокальной.

На рис.2 представлен ход лучей из точки объекта, лежащей вне оси.

Отрезок АF ок является действительным перевернутым изображением бесконечно удаленного предмета. Таким образом, труба Кеплера дает перевернутое изображение. Окуляр можно установить так, чтобы он действовал как лупа, создавая мнимое увеличенное изображение объекта на расстоянии наилучшего зрения D (см. рис.3).

Для определения увеличения трубы Кеплера рассмотрим рис.4.

Пусть лучи от бесконечно удаленного объекта падают на объектив параллельным пучком под углом -u к оптической оси, а из окуляра выходят под углом u′. Увеличение равно отношению размера изображения к размеру объекта, а это отношение равно отношению тангенсов соответствующих углов зрения. Поэтому увеличение трубы Кеплера равно:

γ = - tgu′/ tgu (1)

Отрицательный знак увеличения означает, что труба Кеплера создает перевернутое изображение. Используя геометрические соотношения (подобие треугольников), очевидные из рис.4, можно вывести соотношение:

γ = - fоб′/fок′ = -d/d′ , (2)

где d – диаметр оправы объектива, d′ - диаметр действительного изображения оправы объектива, создаваемого окуляром.

Зрительная труба Галилея представлена схематично на рис.5.

Окуляром является отрицательная (рассеивающая) линза 2. Фокусы объектива 1 и окуляра 2 совпадают в одной точке, поэтому ход лучей здесь также телескопический. Расстояние между объективом и окуляром равно разности их фокусных расстояний. В отличие от трубы Кеплера, изображение оправы объектива, создаваемое окуляром, будет мнимым. Рассматривая ход лучей из точки объекта, лежащей вне оси (рис.6), заметим, что труба Галилея создает прямое (не перевернутое) изображение объекта.

Используя геометрические соотношения так же, как это было сделано выше для трубы Кеплера, можно рассчитать увеличение трубы Галилея. Если лучи от бесконечно удаленного объекта падают на объектив параллельным пучком под углом -u к оптической оси, а из окуляра выходят под углом u′, то увеличение равно:

γ = tgu′/ tgu (3)

Также можно показать, что

γ = fоб′/fок′, (4)

Положительный знак увеличения показывает, что изображение, наблюдаемое в трубу Галилея, прямое (не перевернутое).

ПОРЯДОК РАБОТЫ

Приборы и материалы: оптическая скамья с установленными в рейтерах следующими оптическими элементами: осветители (полупроводниковый лазер и лампа накаливания), бипризма, две положительные линзы, отрицательная линза, экран.

ЗАДАНИЕ 1. Измерение увеличения трубы Кеплера .

1. Установите на оптическую скамью полупроводниковый лазер и бипризму. Луч лазера должен попадать на ребро бипризмы. Тогда из бипризмы выйдут два луча, идущие параллельно. Труба Кеплера служит для наблюдения очень удаленных предметов, поэтому на её вход поступают параллельные пучки лучей. Аналогом такого параллельного пучка будут служить два луча, выходящие из бипризмы параллельно друг другу. Измерьте и запишите расстояние d между этими лучами.

2. Далее соберите трубу Кеплера, используя в качестве объектива положительную линзу с большим фокусом, а в качестве окуляра – положительную линзу с меньшим фокусом. Зарисуйте получившуюся оптическую схему. Из окуляра должны выйти два луча, параллельные друг другу. Измерьте и запишите расстояние d" между ними.

3. Рассчитайте увеличение трубы Кеплера как отношение расстояний d и d", учитывая знак увеличения. Вычислите погрешность измерений и запишите результат с погрешностью.

4. Можно измерить увеличение и другим способом. Для этого надо осветить объектив другим источником света – лампой накаливания и получить действительное изображение оправы объектива позади окуляра. Измерьте диаметр оправы объектива d и диаметр его изображения d". Вычислите увеличение и запишите его с учетом погрешности измерений.

5. Рассчитайте увеличение по формуле (2) как отношение фокусных расстояний объектива и окуляра. Сравните с увеличением, рассчитанным в п.3 и в п.4.

ЗАДАНИЕ 2. Измерение увеличения трубы Галилея .

1. Установите на оптическую скамью полупроводниковый лазер и бипризму. Из бипризмы должны выйти два параллельных луча. Измерьте и запишите расстояние d между ними.

2. Далее соберите трубу Галилея, используя в качестве объектива положительную линзу, а в качестве окуляра -- отрицательную. Зарисуйте получившуюся оптическую схему. Из окуляра должны выйти два луча, параллельные друг другу. Измерьте и запишите расстояние d" между ними.

3. Рассчитайте увеличение трубы Галилея как отношение расстояний d и d". Вычислите погрешность измерений и запишите результат с погрешностью.

4. Рассчитайте увеличение по формуле (4) как отношение фокусных расстояний объектива окуляра. Сравните с увеличением, рассчитанным в п.3.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое телескопический ход лучей?

2. Чем отличается труба Кеплера от трубы Галилея?

3. Какие оптические системы называются афокальными?

Определение увеличения зрительной трубы с помощью рейки. Если навести трубу на близкостоящую рейку,то можно сосчитать, сколько делений рейки N, видимой невооруженным глазом, соответствуют n делениям рейки, видимой в трубу. Для этого нужно смотреть поочередно в трубу и на рейку, проектируя деления рейки из поля зрения трубы на рейку, видимую невооруженным глазом.

Высокоточные геодезические приборы имеют сменные окуляры с разными фокусными расстояниями, и смена окуляра позволяет изменять увеличение трубы в зависимости от условий наблюдений.

Увеличение трубы Кеплера равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра.

Обозначим через γ угол, под которым видны n делений в трубу и N делений без трубы (рис.3.8). Тогда одно деление рейки видно в трубу под углом:

α = γ / n,

а без трубы – под углом:

β = γ / N.

Рис.3.8

Отсюда: V = N / n .

Увеличение трубы можно приближенно вычислить по формуле:

V = D / d, (3.11)

где D – входной диаметр объектива;

d – диаметр выходного отверcтия трубы (но не диаметр окуляра).

Поле зрения трубы. Полем зрения трубы называют участок пространства, видимый в трубу при неподвижном ее положении. Поле зрения измеряют углом ε, вершина которого лежит в оптическом центре объектива, а стороны касаются краев отверстия диафрагмы (рис.3.9). Диафрагма диаметром d1 устанавливается внутри трубы в фокальной плоскости объектива.Из рисунка 3.11 видно, что:

откуда

Рис.3.9.

Обычно в геодезических приборах принимают d1 = 0.7 * fок, тогда в радианной мере:

ε = 0.7 / V.

Если ε выразить в градусах, то:

ε = 40o / V . (3.12)

Чем больше увеличение трубы, тем меньше ее угол зрения. Так, например, при V = 20x ε = 2o, а при V = 80x ε = 0.5o.

Разрешающая способность трубы оценивается по формуле:

Например, при V = 20x ψ = 3″; под таким углом виден предмет размером 5 см на расстоянии 3.3 км; человеческий глаз может видеть этот предмет на расстоянии всего 170 м.

Сетка нитей. Правильным наведением зрительной трубы на предмет считается такое, когда изображение предмета находится точно в центре поля зрения трубы. Чтобы исключить субъективный фактор при нахождении центра поля зрения, его обозначают сеткой нитей. Сетка нитей – это в простейшем случае два взаимно перпендикулярных штриха, нанесенных на стеклянную пластинку, которая крепится к диафрагме трубы. Сетка нитей бывает разных видов; на рис.3.10 показаны некоторые из них.

Сетка нитей имеет исправительные винты: два боковых (горизонтальных) и два вертикальных. Линия, соединяющая центр сетки нитей и оптический центр объектива, называется визирной линией или визирной осью трубы.



Рис.3.10

Установка трубы по глазу и по предмету. При наведении трубы на предмет нужно одновременно четко видеть в окуляре сетку нитей и изображение предмета. Установкой трубы по глазу добиваются четкого изображения сетки нитей; для этого передвигают окуляр относительно сетки нитей, вращая рифленое кольцо на окуляре. Установка трубы по предмету называется фокусированием трубы. Расстояние до рассматриваемых предметов бывает разным, и согласно формуле (3.6) при изменении a расстояние b до его изображения также меняется. Чтобы изображение предмета при рассматривании его в окуляр было четким, оно должно располагаться в плоскости сетки нитей. Передвигая окулярную часть трубы вдоль главной оптической оси, изменяют расстояние от сетки нитей до объектива до тех пор, пока оно станет равным b.

Трубы, у которых фокусирование выполняется путем изменения расстояния между объективом и сеткой нитей, называются трубами с внешней фокусировкой. Такие трубы имеют большую и притом переменную длину; они негерметичны, поэтому внутрь них попадают пыль и влага; на близкие предметы они вообще не фокусируются. Зрительные трубы с внешней фокусировкой в современных измерительных приборах не применяются

Более совершенными являются трубы с внутренней фокусировкой (рис.3.11); в них применяется дополнительная подвижная рассеивающая линза L2, образующая вместе с объективом L1 эквивалентную линзу L. При перемещении линзы L2 изменяется расстояние между линзами l и, следовательно, изменяется фокусное расстояние f эквивалентной линзы. Изображение предмета, находящееся в фокальной плоскости линзы L, также перемещается вдоль оптической оси, и когда оно попадает на плоскость сетки нитей становится четко видным в окуляре трубы. Трубы с внутренней фокусировкой короче; они герметичны и позволяют наблюдать близкие предметы;в современных измерительных приборах применяются в основном такие зрительные трубы.

Зрительная труба представляет собой оптический прибор, предназначенный для рассматривания глазом весьма удаленных предметов. Как и микроскоп, она состоит из объектива и окуляра; и тот и другой являются более или менее сложными оптическими системами, хотя и не столь сложными, как в случае микроскопа; однако мы их будем схематически представлять тонкими линзами. В зрительных трубах объектив и окуляр располагаются так, что задний фокус объектива почти совпадает с передним фокусом окуляра (рис. 253). Объектив дает действительное уменьшенное обратное изображение бесконечно удаленного предмета в своей задней фокальной плоскости; это изображение рассматривается в окуляр, как в лупу. Если передний фокус окуляра совпадает с задним фокусом объектива, то при рассматривании удаленного предмета из окуляра выходят пучки параллельных лучей, что удобно для наблюдения нормальным глазом в спокойном состоянии (без аккомодации) (ср. § 114). Но если зрение наблюдателя несколько отличается от нормального, то окуляр передвигают, устанавливая его «по глазам». Путем передвижения окуляра производится также «наводка» зрительной трубы при рассматривании предметов, расположенных на различных не очень больших расстояниях от наблюдателя.

Рис. 253. Расположение объектива и окуляра в зрительной трубе: задний фокус. Объектива совпадает с передним фокусом окуляра

Объектив зрительной трубы должен быть всегда собирающей системой, окуляр же может быть как собирающей, так и рассеивающей системой. Зрительная труба с собирающим (положительным) окуляром называется трубой Кеплера (рис. 254, а), труба с рассеивающим (отрицательным) окуляром - трубой Галилея (рис. 254, б). Объектив 1 зрительной трубы дает действительное обратное изображение удаленного предмета в своей фокальной плоскости . Расходящийся пучок лучей из точки падает на окуляр 2; так как эти лучи идут из точки в фокальной плоскости окуляра, то из него выходит пучок, параллельным побочной оптической оси окуляра под углом к главной оси. Попадая в глаз, лучи эти сходятся на его сетчатке и дают действительное изображение источника.

Рис. 254. Ход лучей в зрительной трубе: а) труба Кеплера; б) труба Галилея

Рис. 255. Ход лучей в призменном полевом бинокле (а) и его внешний вид (б). Изменение направления стрелки указывает на «обращение» изображения после прохождении лучей через часть системы

(В случае галилеевой трубы (б) глаз не изображен, чтобы не загромождать рисунка.) Угол - угол, который составляют с осью лучи, падающие на объектив.

Труба Галилея, нередко применяемая в обычном театральном бинокле, дает прямое изображение предмета, труба Кеплера - перевернутое. Вследствие этого, если труба Кеплера должна служить для земных наблюдении, то ее снабжают оборачивающей системой (дополнительной линзой или системой призм), в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль (рис. 255). Преимуществом трубы Кеплера является то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу, фотопластинку для производства снимков и т. п. Вследствие этого в астрономии и во всех случаях, связанных с измерениями, применяется труба Кеплера.

Темы кодификатора ЕГЭ: оптические приборы.

Как мы знаем из предыдущей темы , для более подробного разглядывания объекта нужно увеличить угол зрения. Тогда изображение объекта на сетчатке будет крупнее, и это приведёт к раздражению большего числа нервных окончаний зрительного нерва; в мозг направится большее количество визуальной информации, и мы сможем увидеть новые детали рассматриваемого объекта.

Почему угол зрения бывает малым? На то есть две причины: 1) объект сам по себе имеет малый размер; 2) объект, хотя и достаточно велик по размерам, но расположен далеко.

Оптические приборы - это приспособления для увеличения угла зрения. Для рассматривания малых объектов используются лупа и микроскоп. Для рассматривания далёких объектов применяются зрительные трубы (а также бинокли, телескопы и т. д.)

Невооружённый глаз.

Начинаем с рассматривания мелких объектов невооружённым глазом. Здесь и далее глаз считается нормальным. Напомним, что нормальный глаз в ненапряжённом состоянии фокусирует на сетчатке параллельный пучок света, а расстояние наилучшего зрения для нормального глаза равно см.

Пусть небольшой предмет размером находится на расстоянии наилучшего зрения от глаза (рис. 1 ). На сетчатке возникает перевёрнутое изображение предмета, но, как вы помните, это изображение затем вторично переворачивается в коре головного мозга, и в результате мы видим предмет нормально - не вверх ногами.

Ввиду малости предмета угол зрения также является малым. Напомним, что малый угол (в радианах) почти не отличается от своего тангенса: . Поэтому:

. (1)

Если r расстояние от оптического центра глаза до сетчатки, то размер изображения на сетчатке будет равен:

. (2)

Из (1) и (2) имеем также:

. (3)

Как известно, диаметр глаза составляет около 2,5 см, так что . Поэтому из (3) следует, что при рассматривании мелкого предмета невооружённым глазом изображение предмета на сетчатке примерно в 10 раз меньше самого предмета.

Лупа.

Укрупнить изображение объекта на сетчатке можно с помощью лупы (увеличительного стекла).

Лупа - это просто собирающая линза (или система линз); фокусное расстояние лупы обычно находится в диапазоне от 5 до 125 мм. Предмет, разглядываемый через лупу, помещается в её фокальной плоскости (рис. 2 ). В таком случае лучи, исходящие из каждой точки предмета, после прохождения лупы становятся параллельными, и глаз фокусирует их на сетчатке, не испытывая напряжения.

Теперь, как видим, угол зрения равен . Он также мал и приблизительно равен своему тангенсу:

. (4)

Размер l изображения на сетчатке теперь равен:

. (5)

или, с учётом (4) :

. (6)

Как и на рис. 1, красная стрелочка на сетчатке также направлена вниз. Это означает, что (с учётом вторичного переворачивания изображения нашим сознанием) в лупу мы видим неперевёрнутое изображение предмета.

Увеличение лупы - это отношение размера изображения при использовании лупы к размеру изображения при рассматривании предмета невооружённым глазом:

. (7)

Подставляя сюда выражения (6) и (3) , получим:

. (8)

Например, если фокусное расстояние лупы равно 5 см, то её увеличение . При рассматривании через такую лупу объект кажется в пять раз больше, чем при рассматривании его невооружённым глазом.
Подставим также в формулу (7) соотношения (5) и (2) :

Таким образом, увеличение лупы есть угловое увеличение: оно равно отношению угла зрения при рассматривании объекта через лупу к углу зрения при рассматривании этого объекта невооружённым глазом.

Отметим, что увеличение лупы есть величина субъективная - ведь величина в формуле (8) есть расстояние наилучшего зрения для нормального глаза. В случае близорукого или дальнозоркого глаза расстояние наилучшего зрения будет соответственно меньше или больше.

Из формулы (8) следует, что увеличение лупы тем больше, чем меньше её фокусное расстояние. Уменьшение фокусного расстояния собирающей линзы достигается за счёт увеличения кривизны преломляющих поверхностей: линзу надо делать более выпуклой и тем самым уменьшать её размеры. Когда увеличение достигает 40–50, размер лупы становится равным нескольким миллиметрам. При ещё меньших размерах лупы пользоваться ей станет невозможно, поэтому считается верхней границей увеличения лупы.

Микроскоп.

Во многих случаях (например, в биологии, медицине и т. д.) нужно наблюдать мелкие объекты с увеличением в несколько сотен. Лупой тут не обойдёшься, и люди прибегают к помощи микроскопа.

Микроскоп содержит две собирающие линзы (или две системы таких линз) - объектив и окуляр. Запомнить это просто: объектив обращён к объекту, а окуляр - к глазу (к оку).

Идея микроскопа проста. Рассматриваемый объект находится между фокусом и двойным фокусом объектива, так что объектив даёт увеличенное (действительное перевёрнутое) изображение объекта. Это изображение располагается в фокальной плоскости окуляра и затем рассматривается в окуляр как в лупу. В результате удаётся достичь итогового увеличения, гораздо большего 50.

Ход лучей в микроскопе показан на рис. 3 .

Обозначения на рисунке понятны: - фокусное расстояние объектива - фокусное расстояние окуляра - размер объекта; - размер изображения объекта, даваемого объективом. Расстояние между фокальными плоскостями объектива и окуляра называется оптической длиной тубуса микроскопа.

Обратите внимание, что красная стрелочка на сетчатке направлена вверх. Мозг вторично перевернёт её, и в результате объект при рассмотрении в микроскоп будет казаться перевёрнутым. Чтобы этого не происходило, в микроскопе используются промежуточные линзы, дополнительно переворачивающие изображение.

Увеличение микроскопа определяется точно так же, как и для лупы: . Здесь, как и выше, и - размер изображения на сетчатке и угол зрения при рассматривании объекта в микроскоп, и - те же величины при рассматривании объекта невооружённым глазом.

Имеем по-прежнему , а угол , как видно из рис. 3 , равен:

Деля на , получим для увеличения микроскопа:

. (9)

Это, разумеется, не окончательная формула: в ней присутствуют и (величины, относящиеся к объекту), а хотелось бы видеть характеристики микроскопа. Ненужное нам отношение мы устраним с помощью формулы линзы.
Для начала ещё раз посмотрим на рис. 3 и используем подобие прямоугольных треугольников с красными катетами и :

Здесь - расстояние от изображения до объектива, - a - расстояние от объекта h до объектива. Теперь привлекаем формулу линзы для объектива:

из которой получаем:

и это выражение мы подставляем в (9) :

. (10)

Вот это и есть окончательное выражение для увеличения, даваемого микроскопом. Например, если фокусное расстояние объектива равно см, фокусное расстояние окуляра , а оптическая длина тубуса см, то согласно формуле (10)

Сравните это с увеличением одного только объектива, которое вычисляется по формуле (8) :

Увеличение микроскопа в 10 раз больше!

Теперь мы переходим к объектам, которые достаточно крупны, но находятся слишком далеко от нас. Чтобы рассматривать их получше, применяются зрительные трубы - подзорные трубы, бинокли, телескопы и т. д.

Объективом зрительной трубы служит собирающая линза (или система линз) с достаточно большим фокусным расстоянием. А вот окуляром может быть как собирающая, так и рассеивающая линза. Соответственно имеются два вида зрительных труб:

Труба Кеплера - если окуляр является собирающей линзой;
-труба Галилея - если окуляр является рассеивающей линзой.

Рассмотрим подробнее, как работают эти зрительные трубы.

Труба Кеплера.

Принцип действия трубы Кеплера очень прост: объектив даёт изображение удалённого обекта в своей фокальной плоскости, а затем это изображение рассматривается в окуляр как в лупу. Таким образом, задняя фокальная плоскость объектива совпадает с передней фокальной плоскостью окуляра.

Ход лучей в трубе Кеплера изображён на рис. 4 .


Рис. 4

Объектом служит далеко расположенная стрелка , направленная вертикально вверх; она не показана на рисунке. Луч из точки идёт вдоль главной оптической оси объектива и окуляра. Из точки идут два луча, которые ввиду удалённости объекта можно считать параллельными.

В результате изображение нашего объекта, даваемое объективом, расположено в фокальной плоскости объектива и является действительным, перевёрнутым и уменьшенным. Размер изображения обозначим .

Невооружённым глазом объект виден под углом . Согласно рис. 4 :

, (11)

где - фокусное расстояние объектива.

Изображение объекта мы видим в окуляр под углом , который равен:

, (12)

где - фокусное расстояние окуляра.

Увеличение зрительной трубы - это отношение угла зрения при наблюдении в трубу к углу зрения при наблюдении невооружённым глазом:

Согласно формулам (12) и (11) получаем:

(13)

Например, если фокусное расстояние объектива равно 1 м, а фокусное расстояние окуляра равно 2 см, то увеличение зрительной трубы окажется равным: .

Ход лучей в трубе Кеплера принципиально тот же, что и в микроскопе. Изображением объекта на сетчатке также будет стрелочка, направленная вверх, и поэтому в трубе Кеплера мы увидим объект перевёрнутым. Во избежании этого в пространстве между объективом и окуляром ставят специальные оборачивающие системы линз или призм, которые ещё раз переворачивают изображение.

Труба Галилея.

Галилей изобрёл свой телескоп в 1609 году, и его астрономические открытия потрясли современников. Он обнаружил спутники Юпитера и фазы Венеры, разглядел лунный рельеф (горы, впадины, долины) и пятна на Солнце, а сплошной с виду Млечный Путь оказался скоплением звёзд.

Окуляром трубы Галилея служит рассеивающая линза; задняя фокальная плоскость объектива совпадает с задней фокальной плоскостью окуляра (рис. 5 ).


Рис. 5.

Если бы окуляра не было, то изображение удалённой стрелки находилось бы в
фокальной плоскости объектива. На рисунке это изображение показано пунктиром - ведь в реальности его там нет!

А нет его там потому, что лучи от точки , которые после прохождения объектива стали сходящимися к точке , не доходят до и попадают на окуляр. После окуляра они вновь становятся параллельными и поэтому воспринимаются глазом без напряжения. Но теперь мы видим изображение объекта под углом , который больше угла зрения при рассматривании объекта невооружённым глазом.

Из рис. 5 имеем

и для увеличения трубы Галилея мы получаем ту же формулу (13) , что и для трубы Кеплера:

Заметьте, что при том же увеличении труба Галилея меньше размером, чем труба Кеплера. Поэтому одно из основных применений трубы Галилея - театральные бинокли.

В отличие от микроскопа и трубы Кеплера, в трубе Галилея мы видим объекты неперевёрнутыми. Почему?

Похожие статьи